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EXECUTIVE SUNMARY

1.3 Introduction

In the early 1960'., the United States Army supported an extensive exper-
imental and theoretical research program [47) on radiowave propagation in the
environment of a tropical, thickly vegetated jungle. The experimental data ac-
quired during this program were later used by Tamir [93,107,108] to validate a
theoretical propagation model which shows that, for frequencies less than 200

Ws, the principal mechanism responsib .e for long-distance propagation is the
* so-called lateral wave. According to Tamir's theory, a lateral wave propagates

upward from the transmitting antenna through t1em vegetative canopy to the tree
tops, along the air-canopy interface, and downward from the tree tops through
the canopy to the receiving antenna.

Recently, the Army has become interested in the development of several
1O spread-spectrum radio systems (e.g. Packet Radio,, PLRS, JTIDS) operating in

the frequency band 200-2000 MHz. Frcm the perspective of radio wave prop-
agation, these newer systems differ from earlier ones in three important re-
spects: (1) their higher operational frequencies, (2) their broader spectral
occupancy, and/or (3) their pulsed (digital) mode of operation. The Tamir
model, however, in valid primarily below 200 Mfz and, further, considers only

the propagation of an unmodulated, time-harmonic signal in a continuous iso-
tropic medium.

This report describes a stochastic radiowave propagation model useful for
assessing the effects of forests end other vegetation upon digital spread-spec-
true radio communication systems operating in the 200 - 2000 MHz band. Accord-
ing to this model, the forest is represented as a time-invariant ensemble of lousy,
randomly positioned and oriented discrete canonical scatterers. Tree trunks are
modelled as infinitely-long, circular, dielectric cylinders; branches as finitely-
long, circular dielectric cylinders; and leaves as flat, circular, dielectric
discs. The orientation of these elements must be specified (statistically) be-
cause their scattering is directional. Thus the Model is anisotropic, with dif-

1 ferent properties in different directions. The madel is developed in sufficient
detail to be useful in the prediction of attenuation and pulse distortion of mean
scattered radiowaves. Areas for future study are i4entifird below in Sectinns 3,
4, 5, 7, and 8.

2.0 Radiowave Scattering in Discrete Random Media

The forest is viewed as a random ensemble of tree trunks, branches, and
leaves all having prescribed location and orientatim statistics. Because of

the inherent randomness associated with this medium of discrete scatterers, the
behavior of propagating radiowaves within the forest cannot be &'scribed by tradi-
tional, deterministic electromaanetic models but rather only by modern stochastic
models. Such models provide thi basis for determining the two most important char-
acteristics of the propagating electromagnetic wave: the mean field component,
and the space-frequency correlation function which characterizes the random (or
fluctuating) field component. See Section 2.2.4.

The stochastic electromagnetic model employed by Cyeroq. as the basis for
this study of radiowave propagation through the forest is described in Section 2
of thin -eport. The model was first developed by Foldy [53] and later extended
by Lax [55a], Twersky [64], Lang [571, and others. The forest is considered to
be a discrete medium representable va a time-invariant ensemble of randomly

3-1
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positioned and oriented discrete canonical scatterers. Tree trunks are mcdeled
a& infinitely-long, circular, dielectric cylinders; branches ao finitely-long,
circular, dielectric cylindersg and leaves as flat, circular dielectric discs.

The electromagnetic w&ves scattered by the canonical scatterars (the cyl-
inders and discs) are related to the fields induced within them by the incident .'
fields. The fields induced within a single scatterer are related to the inci-
dent electromagnetic wave through the transition operator. This latter rela-
tio arises as a direct consequence of the linearity implic.t in Maxwell's
equations. Scatterers are also characterized by the amplitude of the scattered
field when the scatterer is illuminated by a plane-wve. Both the transition

operator and the scattering amplitude are employed in the development of the
theory. CyperCom has utilized the Foldy-Lax model in considering radiowave
scattering within an unbounded forest comprised of either two-dimensional scat-
terers (infinitely-long, circular, cylinders representing tree trunks) or 9
three-dimensional scatterers, (finitely-long, circular, cylinders representing
branches, and flat, circular, discs representing leaves). For these media,
CyberCaa used the Twersky model to derive mathematical expressions describing
the behavior of the mean scattered field and the space-frequency correlation
function. These expressions, which represent the principal results of Section
2, provide the basis for subsequent studies addressed in later sections of this 9
report relating to the effective permittivity (susceptibility) of the forest, the
specific attenuation of radiowaves propagating through the forest, the estimation
of contributions by the lateral wave propagating above an anisotropic forest, the
dispersion of broadband radiowave pulses, and the assessment of the relative
strength of the mean and random components of the scattered radiowave.

3.0 Dyadic Scattering Amplitude

The stochastic electromagnetic model employed by CyberCom as the basis for
this study of radiowave propagation through forests is predicated upon the asser-
tion that the far-field acattering behavior of the individual canonical scatterers 4
(the cylinders and discs) can be characterized by a (dyadic) transition operator
and/or scattering amplitude. In Chapter 3 of this report, mathematical exprvasions
are derived relating the scattering amplitudes of the three canonical scatterers
to the dimensions, orientation, and permittivity of the scatterer and to the fre-
quency and polarization of te propagating radiowave. Approximate expressions
valid only in the low-frequency (Rayleigh) regime have been obtained for all three %9-
canonical scatterers. In addition, exact expressions valid for all frequency bands
have been obtained for infinite-length, circular, dielectric cylinders (tree trunks)
and approxitate expressions suitable for the resonant regime have been obtained for
discs (leaves). These expressions represent the principal results of Section 3.
A resonant model for finite-length, circular, dielectric cylinders (branches) has
yet to be developed.

4.0 Coherent Forest Scattering

A physically-appealing representation for the mean field component can be
obtained by postulating that the mean (or coherent) field component satisfies

O Maxwell's equations "in the mean" and that the ensemble of discrete scatterers
can be replaced by an equivalent continuous medium described by an effective

.5 E-2



dyadic permittivity L In general, & has been found to depend upon the direction
of radiowave propagation trough the forest; such media are terms€ spatially die-

9 persive. See Section 4.1. Because L i a dyadic, the forest is found, in general,
to be anisotropic.

A constitutive parameter of the equivalent continuous medium closely allied
to the effective dyadic permittivity L is the effective dyadic susceptibility 1,
so defined that IL a L + L where I is the unit dyadic. OCberCom has found that

* X is directly proportional to the fractional volume of the forest occupied by the
scatterers. As a consequence, it is a parameter which is conveniently scaled to

scatterer density and, therefore, is preferred over & for the characterization
of the equivalent midium. Mathematical expressions for the effective dyadic sus-
ceptibility of unbomded forests of tree trunks, branches, and leaves have been
obtained in Section 4 under the hypothesis that the orientation distribution of

* the canonical scatterers is auinuthally uniform about the vertical. Numerical
computations based upon typical forest parameters show reasonably good agreement
with values inferred from measurements.

CvberCon has solved the wave equation for the mean scattered field prop-
agating through an unbounded forest consisting solely of tree trunks, branches,
or leaves. The solution reveals that, to a first approximation, the horizontally-

and vertically polarized waves propagate independently and without any depolarisa-
tion. Further, these waves propagate with velocities del. lent upon the inclina-
tion of their wave-normal to the forest floor. These eff, :us are a consequence

of the anisotropy and spatially-dispersive character of the equivalent forestm di u. 
0 ."1

In general, the wave propagation constant has both real and imaginary com-ponents. 7be real part in expressed in radians per maer; the imaginary part,

also called the specific attenuation, is expressed in nepers per mster or, alter-
natively, in decibels per meter. Mathematical expressids for the specific at-
tenuation of radiowaves propagating through unbounded forests of tree trunks,

Sbranches, and leaves have been obtained in Section 4 using the dispersion re-
lation and the effective dyadic susoeptibility. Numerical conutations based
upon typical forest parameters show reasonably good agreement with measured values.

Experimental verification of the electromagnetic model and, ultimately, pre-
diction of radio system performance reqtires the identification of measureable
quantitative parameters to characterize the forest. Sow of these parameters
have already been identified by CyberCom during the course of this study. Some
of these parameters (e.g., the size and relative perittivity of individual tree
trunks, branches or leaves) .are tirmed "microscopic"; others (e.g., nuaber of

* trees per hectare or branches or leaves per cubic mter, foliage orientation dis-
tribution) are termed "acroscopic". in the low-frequency (Rayleigh) regime,
CyberCom has been able to derive fairly simple engineering expressions relating

* specific attenuation to salient parameters of the forest. One composite parameter,
especially important at low frequencies is the fractional voluun occupied by the
vegetation. Prior to this study, no such expressions were available for predicting

the relationship between specific attenuation (d/a) and salient forest parameters.
More work is required to identify real-world forest types and to derive the asso-
ciated susceptibilities and specific attenuations.

3-3
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5.0 Anisotropic Forest-Slab Model

The forest model described in previous sections of this report (an unbounded
ensemble of randomly-positioned tree trunks, branches and leaves having prescribed
location and orientation statistics) can be refined by assuning the trees to be
spread uniformly in height above a smooth forest floor and bounded above by air.

Earlier efforts [93,104,107] have shown, however, that the presence of the ground
complicates the model significantly. These complications can be avoided, however, C#
by allowing the ground plane to recede from the air-forest interface so that the
model adopted by CyberCom provides a very good approximation to the basic slab
model if both the transmitting and receiving antennas ar not located too close
to the ground [107]. Further work should include the effects of the ground plane.

The lower half-space representing the forest is characterized (at least so far c-
as the mean scattered fields are concerned) by effective dyadic permittivity & and
so may be considered, in general, to be electrically anisotropic and spatially dis-
persive. The relation between the effective dyadic permittivity L and the biophys-
ical parameters of the forest has been discussed previously. A transmitting antenna
representable as a vertical (Hertzian) dipole having a time-harmonic current momnt
of angular fzequency w is assumed to be iiersed a distance d below the air-forest
interface.

The electromagnetic boundary value problem suggested by the anisotropic half-
space model has been solved by CyberCon using the classical approach first described
by Somerfeld [111) and later extended by Brekhovskikh (87). In effecting this
solution, CyerCom considered the forest to be uniaxially anisotropic (a consequence .

of the prescribed azimuthal uniformity in the scatterer-orientation probability dis-
tributions). Earlier, Sachs and Wyatt [101, and Tamir and others (93,107] had con-
sidered similar, but isotropic, slab-type models based upon postulated effective
permittivities which could not be related directly to the biophysical paramters of
the forest. A principal conclusion derived from the earlier efforts was the exper-
Imentally-confirmed conjecture that radiowave propagation over long distances be- d
tween antennas within forests is dominated by a so-called lateral wave. According
to those models, the lateral wave propagates from the transmitting antenna up
through the forest at the critical angle to the air-forest interface, through the
air along the air-forest interface, and down through the forest at the critical
angle from the air-forest interface to the receiver. Because a substantial frac-
tion of the transmission path of the lateral wave can lie in the dissipationless
air, the transmission loss associated with the lateral wave can be significantly
lower than that associated with the direct wave through the forest. The former
was characterized by Tamir as inversely proportional to the square of the distance.

The anisotropic half-space model considered by CyberCom also shows that the
propagation of the mean field scattered from randomly-positioned tree trunks,
branches, and leaves is dominated at low frequh:cies and large distances by the
lateral wave. Preliminary studies reported in Section 7 suggest that in the fre-
quency band 200 - 2000 MXK the non-coherent random field is larger -hat the co-
herent mean field, causing large spatial fluctuations.

6 6.0 Forest Pulse Response

The anisotropic forest-slab model developed by Cyber Om in Section 5 of this
report is a time-harmonic model in the sense that the signal radiated by the an-
tenna is a sinusoidal waveform of angular frequency w. However, because the

E-4



iquivalent continous medium charaute 'ized by the effective dyadic permittivity

L is a linear medium, Fourier-transfkrr techniques can be employed to generalize
the model so that it can accommodate such arbitrarily-modulated waveforms as the
pulse transmissions employed for spread-spectrum digital systems. Due to the
complex frequency dependence exhibited by the effective dyadic permittivity of
the forest, the model employs numerical techniques based upon the fast Fourier
transform. Using this model, in Section 6 of this report, the forest pulse re-
sponse, defined here as the vertically-polarized component of the mean scattered
electric field, is found for a transmitted 5.8 nanosecond rectangular pulse :0
having a carrier frequency of 600 Megahertz. The model can b used to assess
medium-induced pulse distortion and inter-symbol interference and can be easily
extended to accommodate other field components of the mean wave, arbitrary an-
tenna types, anC even Doppler effects induced by terminal antenna movement.

0 7.0 Non-Coherent Forest Scatteriag

As a radiowave propagates through the forest, power associated with the mean
(or coherent) field is transformed to the random (or non-coherent) scattered
field. In Section 7, this phenomenom is examined and the mechanism related to
specific biophysical parameters of the forest. To ease the mathematical burden,
the forest has been represented as an unbounded medium of infinitely-long, par-
allel tree trunks with transmitting antenna represented as a line-source par-
allel to the trees. Attention has been focused upon the Rayleigh-scattered field
intensity of a radiowave propagating normal to the trunks. The results show
that the intensity of the non-coherent scattered field increases relative to that

* of the coherent (mean) field with increasing distance from the source and with
increasing frequency. Is is desirable to study the non-coherei-t field further
and to attempt to include the effects of leaves.

8.0 Conclusions

In summary, the homogenous, isotropic, refracting slab of a forest has
been replaced by CyberCom with an inhomogenous, anisotropic, scattering ensemble
of trunks, branches, and leaves. In consequence:

1. The lateral-wave contribution has been found even above 200 Megahertz.
2. Preliminary validation of the model has shown rough agreement with

experiments.
3. Results have been obtained for narrow pulse transmission at 600 MHz.
4. A preliminary study has emphasized the importance of the incoherent

component of the transmitted field,
As the CyberCom approach is ambitious in both scope and depth, the following
remain t-6 -ne:

a. The techniques #'ready developed must be exercised to determine the .
relative importance of forest components and the effects of varying
critical parameters. For example, if the contribution of branches
is major, the difficult characterization of the scattering properties
should be advanced in the resonant region.

b. The effects of antenna directivity, the ground, and terminal move-
ment should be incorporated into the model.

c. The diffficilt transport theory for the important non-coherent scat-
tared wave should be developed as far as practical.

d. Forest studies must be pursued to quantify important biophysical para-
veters in ereas of interest.

Ez-5



1.0 Introduction

* This report describes a stochastic radiowave propagation p

model useful for assessing the effects of forests and other vege-

tation upon radio communication systems operating in the 200 - 2000

Megahertz frequency band. In this introductory section, the back-

* ground leading to the requirement for such a model is presented,

with a summary of the approach employed for its development and an

outline of this report.

1.1 Background

The United States Army has had a long and continuing interest

in radiowave propagation through forest, jungle, or otherwise

vegetated environments. In the early 1960's, the Army supported an
axtensive experimental and theoretical research program [47] on kj
radiowave propagation in the environment of a tropical, thickly

vegetated jungle. The experimental data acquired during this pro-
[ gram were later used by Tamir [93, 107, 108] to validate a theoret- A

ical propagation model which shows that, for frequencies less than

200 MHz, the principal mechanism responsible for long-distance.
propagation is the so-called lateral wave. According to this

theory, a lateral wave propagates upward from the transmitting

antenna, through the vegetative canopy to the tree tops, along the

air-canopy interface, and downward from the tree topu through the

canopy to the receiving antenna. Prior to the Army's research

program, it was generally believed, primarily on the basis of mea-

surements made in England by Saxton and Lane [36], that the excess
(specific) attenuation contributed by the foliage per meter of path

length was independent of distance and unacceptably high for the

*i tactical deployment of VHF radio sets on long paths in forests.
Some of the experimental data used by Tamir and the Army in refuting

* this erroneous contention are shown in Figure 1-1 along with the

* experimental data of Saxton and Lane.

Recently, the Army has become interested in the development of
several spread-spectrum radio systems (e.g., Packet Radio, PLRS,

JTIDS) [163]. From the perspective of radiowave propagation, these

~1-1
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newer systems differ from earlier ones in three important respects;

(1) their higher operational frequencies, (2) their broader spec-

tral occupancy, and (3) their pulsed (digital) mode of transmission.

The intelligent deploymeit of these systems in vegetative environ-

ments requires a radiowave propagation model capable of describing

(1) the attenuating characteristics of whatever propagation mech-
anism is likely to prove dominant at these higher frequencies, and

(2) the time-variant, dispersive characteristics of the vegetation

as it affects wideband, pulsed, transmission modes.

* To support this requirement for enhanced propagation models,

the Army has again embarked upon an ambitious research and develop-

ment program, [164] but now directed toward the higher frequency

bands (200 - 2000 MHz) and digital spread-spectrum modulation tech-

*niques typifying the modern electronic battlefield. Experimental
aspects of this program have included wideband propagation measure-

ments in the presence of forests [291, the derivation of empirical

path-loss propagation models [451, and, most recently, the develop-

* ment of sophisticated, microprocessor-controlled, spread-spectrum,
mobile radio measurement equipment. Complementary theoretical "K1
aspects if the program are described in this report.

Prior to the publication of this report, there had been no

• theoretically-based radiowave propagation model for vegetative en-

vironments suitable for frequencies in the band 200 - 2000 MHz and

capable of describing not only transmission path attenuation but

also pulse distortion. The Tamir model is valid primarily below

200 MHz and, further considers only the propagation of an unmodu-
fated, time-harmonic wave; no attempt is made to examine the effect.-

of frequency-dispersive multipath on pulsed signals. Recently,

Brown and Curry [25) have developed a UHF vegetative model for air-

borne, synthetic aperture radars operating near grazing incidence.

Their model, however, neglects the effects of leaves and, further,
does not consider the lateral wave found to be so important by

Tapir.
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1.2 Technical Approach

The forest is considered to be a discrete random medium repre-

sentable as a time-invariant ensemble of randomly positionti and

oriented discrete canonical scatterers. Tree trunks are modelled

as infinitely-long, circular, dielectric cylinders; branches as

finitely-long, circular dielectric cylinders; and leaves as flat,

circular dielectric discs. The electromagnetic wave propagating

within this medium is representable as the sum of two components:

a mean field component and a residual random (or fluctuating)

field component. The scatterers are assumed to be characterized by

either their transition operator or their scattering amplitudes.

Using a discrete scattering model originally proposed by Foldy [53]

and later extended by Twersky, [64] Lax, [55a] Lang [57] and others,

equations are derived which describe the behavior of the mean field 6
and the space-frequency correlation function of the random field.

In this report, attention is concentrated on the behavior of

the mean field! It is shown that witt, regard to this component,

the ensemble of discrete scatterers cim be represented by an equiv-

alent continuous medium characterized by an effective dyadic per-

mittivity which can, in turn, be related directly to the size,

shape, orientation, number density and permittivity of the scat-

terers themselves. This equivalent wedium is then used to determine

the wave propagating within an unbounded torest, and to define an

anisotropic forest slab model analogous to the isotropic slab model

introduced by Sachs and Wyatt [1011 and studied by Tamir [107].

The electromagnetic fields scattered from the tree trunks,

branches, and leaves are assumed to be linearly related to the

mutually-induced currents excited w:Lthin them by the propagating

radio wave. As a consequence, the forest transmission channel be-

tween the transmitter and receiver can be considered linear, and

Fourier spectral techniques employod to extend the time-harmonic

forest slab model to encompass arbitrarily-modulated transmissions.

*Chapter 7 shows the ijortance of the random or noncoherent field.
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1.3 Scope

This report uses a stochastic model for describing the be-
havior of radiowaves propagating through forests or other vegetated

regions. The discrete scattering theory supporting the model is

developed in Sections 2 and 3. In Section 4, the forest is repre-

sented (at least so far as the mean scattered field is concerned)
by an equivalent continuous medium, and characterized by an effec-

tive dyadic permittivity which is directly related to the biophy-

sical parameters of the forest. Also in Section 4, expressions for
the specific attenuation are developed, and evaluated for typical
biophysical parameters of a deciduous, hardwood forest. In Section

5, an anibotropic forest slab model is introduced and the relative

contributions of the different propagation modes (direct wave, re-

flected wave, and lateral wave) assessed. The anisotropic forest

slab model is applied in Section 6 to accommodate arbitrarily-

modulated waveforms; numerical results are presented for the case
of a broadband r-f pulse. Section 7 considers the relative impor-

tance of the random (fluctuating) field.

Although the model described herein can acconmmodate transmit-

ting and receiving antennas of arbitrary directivity and polariza-

tion, this initial study emphasizes vertically-polarized, electri-
cally-short, linear antennas. Further, although Doppler effects

due either to wind-induced tree motion and/or terminal (antenna)

motion can also be accommodated by the model, they are disregarded
here. Finally, although the validity of the model is supported

tentatively by comparison with measurements, this will be pursued
further as the model is developed and additional experimental data

become available.

4.
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2.0 Radiowave Propagation in Discrete Random Media

The basic methodology for describing radiowave propagation -

through the forest is formulated in this section. Because of the -

complexity of vegetation, stochastic or random methods are used

rather than deterministic techniques. The forest is viewed as a

random ensemble of trunks, branches and leaves. Equations are

then developed for the mean and correlation of the electromagnetic

fields. From these averages, physical quantities such as attenua-

,. tion, propagation delay and pulse dispersion are obtained. j
2.1 Representation of Scattered Electromagnetic Fields

The stochastic approach takes the viewpoint that the field

quantities are composed of a mean component and a random (or fluc-

tuating) component. If 0 represents an electromagnetic field

quantity such as E or H, it is in general a function of the loca-

tion and orientation of the vegetative components. Since these

are randomly located and oriented, the field quantity # is a random il

* variable. As such, it can be broken up into a mean component, < >,

and a fluctuating component, , i.e.

r. - <*> + * (2-1-1)

Here the brackets, < >, have been used to denote an ensemble

average. Taking the average of Equation (2-1-1) shows that <>- 0,

a reasonable result since the mean has already been extracted

from *.

The correlation function of ( (see Section 2.2.4) can be de- a.
termined by multiplying * and its complex conjugate ** and averag-

ing over the ensemble. By using Equation (2-1-1) and the fact that

the average fluctuations are zero, the correlation function of .

can be written as p

S*><**> +

Here the correlation is broken up into two components: a mean part,
**> * *>, and a fluctuating component <**>. When absorption is

important than scattering, the fluctuating component is small.

This is typically the case when the wavelength is large compared
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to the eize. of the Ocatterers, In this regime, the

correlation can be approximated by

*> (2-1-3)

It is this approximation that is inherent in early attempts at

forest modeling [92, 93, 100, 101, 106, 107, 108). The forest was

replaced by a dielectric slab and, in effect, mean fields were

computed.

The development of equations for the mean and correlation can

be approached ina two different ways. They are the continuous and

discrete modeling procedures. The continuous approach uses the

mean and correlation of the effective forest permittivity as input

information to the model. The discrete approach, on the other hand,

uses the scattering amplitudes of individual scatterers, as well as

the position and orientation statistics of scatterers. Examples of

modeling by the continuous approach are provided by Keller [56],

Besieris and Kohler [49] and Tsang and Kong 162), while the discrete

approach has been used by Twersky [63, 64], Ishimaru [54, 55] and

Lang [57, 58]. The continuous modeling approach tends to be some-

what simpler than the discrete method. This is due to the need for

scattering amplitudes of individual scatterers in the discrete

method. The discrete technique, however, provides a closer connec-

tion with reality. Individual scatterer sizes and dielectric con-

stants can be measured; the effective dielectric permittivity and

its correlation, as required by the continuous approach, are diffi-

cult quantities to determine.

For the discrete case, an approximate equation for the mean

field was obtained by Foldy [53] for dipole scatterers and later

* by Lax 55a] for resonant-size scatterers. The mean equation is

valid when the fractional volume of vegetation is small. This cri-

terion appears to be satisfied within most forests (see Section 4.3).

Twersky [63] subsequently derived an approximate equation for the

correlation which again is valid when the fractional volume is

small. It is these basic equations that will be used to obtain the

macroscopic effects of vegetation on radiowave propagation.

r2-

2-2



- - -. . . -- - - - - - - - -.-.- ~ -. y r

S.

2.2 Two-Dimensional Scattering Media

* Scattering by an aggregate of parallel dielectric cylinders

is considered in this section. Because of the planar symmetry of

the problem, scalar rather than vector equations can be used. This

substantially simplifies the analysis and thus makes the derivation

* of the mean and correlation equations more transparent. In addi-

tion, the problem provides a good model for a forest consisting

wholly of trunks or ore in which trunks have the dominant effect

on the channel properties.

2.2.1 Model Formulation

Consider a collection of N identical parallel dielectric

cylinders each having complex relative permittivity CP and cross-

sectional surface area S . These scatterers are shown in Figuzer*
2-1. i this figure a cross-sectional view of the forested region

is shown. The forest is totally contained within the area S.

Aralysis of the problem begins by considering Maxwell's time-

harmonic equations (with an exp{jwt} time dependerce assumed)

VxE -j oH
- - (2-2-1)

b Vxj = jU.c( Qt)E + J-4

where io and c. are the permeability and permittivity, respectively,

of free space, L, ..s the angular frequency, and

N
:xt+ 1 * X (Xt) (2-2-2)

j=_.

is the relative permittivity of the scatterers as a fur'otion of
transverse vector position xt . The susceptibility function Xj (xt)

represents the susceptibility of the jth scatterer as a function

of position. It is given by

Etinside jth scatterer

x ( ) 0 t outside jth scatterer (2-2-3)
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Here X iJ- the susceptibility of a scatterer, which is related to
C p by X£ =t I

To reduce the vector field problem to a scalar field problem,

the current is assumed to have the following form

is * Oz (xt)z* (2-2-4)

It has been tacitly assumed in writing Equation (2-2-4) that the

scatterers are parallel to the z-axis. The electromagnetic fields

are decomposed into trancverse and z-directed components so that
!j= E t + EZ19.
- ~t +E~(2-2-5)

-"Ht + Hz-"

Substitution of Equations (2-2-4) and (2-2-5) into Equation (2-2-1) 4

reveals that Ez and N are the only field components excited, and

that they satisfy

[V2~ + k.E(at)jE3 (!t) -Jwvi.J 5 (xE) (2-2-6)

ttSHere 1vt is the transverse del operator and k! = I. C. . The problem

has been scalarized. As a result, the complete field behavior can

be obtained from the scalar field Ez. *1
It is convenient at this point to introduce an operator nota-

* tion. This iaotation will highlight the important aspects of the

development while suppressing unimportant details. It will also

make the parallelism that exists between the scalar and vector

models more apparent. The operator notation is introduced by de-

fining the following quantities:

L = -(Vt + k2,) V) k2Xj(x) (2-2-8)

Y = Ez  g = -JwujJz (2-2-9)

By using this notation in Equation (2-2-6) the wave equation can be

written as

L- V J = g (2-2-10)

*z is a unit vector in the s direction.
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For later use, the field f can be decomposed into incident and

scattered parts. This is written as

If Y + Ts (2-2-11)

where Y is the incident wave and T. is the scattered wave. The

incident field YI is the field that would exist if the scatterers

were not present, thus

L4i - g (2-2-12)

2.2.2 Single-Scatterer Characterization

Before the N-particle problem can be addressed the single

scatterer must be characterized electromagnetically. For this pur- j
pose, the transition operator and scattering amplitude are intzo-

duced in this section. 40

Consider a single scatterer located at the origin as shown in

Figure 2-2. The electric field satisfies the wave equation given .I
by Equation (2-2-10) with N-1. This equation is

(L - V)* - g (2-2-13)

where

V - klX(xt) (2-2-14)

with

- ez g -JWPoJz (2-2-15)

.. and
i X£ , xt inside S

X (xt) i d(2-2-16)
0 , t outside Sp

Lower-case notation has been employed for the field as a reminder

that only one scatterer is being considered.

The transition operator will now be introduced. This operator

relates the induced sources within the scatterer to the incident

field upon the scatterer. To develop this relation, the field is

separated into incident and scattered components so that
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4,

S= 'Pi + * ' L' g (2-2-17)

Substitution of Equation (2-2-17) into Equation (2-2-13) gives the

equation for the scattered field, viz.

Lg geq 0 e V (2-2-18)
se eq

The equivalent sources that genevate the scattered field, g eq are
given by V. The transition operator T can now be defined as

geq = T*i (2-2-19) 3
From the above equation, it is seen that once the incident field is %

specified, the induced sources can be calculated if T is known.

Since bounded yields bounded induced source distributions, this
implies that T is a bounded operator. As a resu.lt, T can be repre-

sented in integral form as

e = Jdt (xtx)*i(K_) (2-2-20)

The kernel t(xt,x.) is analogous to the time-varying impulse re-

sponse h(t,r). One can show that t(xt,x) - 0 for x t or . outside

of Sp. This just means that the equivalent sources are located 2
p

wA.thin the boundaries of the scatterer.

In the low-frequency case, where the wavelength is large com-

pared to the characteristic size of the scatterer's cross-section,

the equivalent source distribution looks like a line current. In

this case, the transition operator's kernel can be written as

t(xtx) = k.2a6(xt) 6x ) (2-2-21)

The introduction of the coefficient a is motivated by three-
dimensional scatterers for which a is the polarizability [5;1.

The s.atterer can be characterized in an alternative manner

b y specifying its far-field response to a unit-amplitude incident

plane wave. If the incident plane wave is given by

* (xt) = exp{-jk.ixt) (2-2-22)

then the scattered field in the radiation zone has the form
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• : exp{-jkoz t} .

f(oi) • xt - I t (2-2-23) ._

where i and o (= 2t/xt) are unit vectors in the direction of the
incident wave and the observation point reepectively as is shown

in Figure 2-2. Equation (2-2-23) serves as a defining eqgiation

for the scattering amplitude, f(oi) .<

The scattering amplituJe and the transition operator are

related to each other. The relationship is

2w' e- j '/4.,
f(o,i) _ _ Y 3 o (2-2-24)

where t(kt,k) is the Fourier transform of t(xt,xl) with respect .i
~~to 2Et  and x,,i.e.,..

t(jtj ) = f Jxtdx (2-2-25)

* The relationship between f and t is derived in Appendix B.

In developing the multiple-scattering equations the transi-
tion operator for a scatterer not located at the oriain will be

needed. Denote the transition operator kernel for the jth scat-

terer by t.(x,x). It can be related to the transition operator

of the scatterer located at the origin. If the jth scatterer's
center is located at Xtj where Xtj is measured from the origin, then.

by a sirple shift of the Incident field and the induced charge, one

finds

tj (x,,x, ) - t(xt-Xtjx -Xt j ) (2-2-26)

Here t(X t,x_) is the transition kernel for a scatterer located at

the origin. It should be noted here t is a function of 0 - the

orientation angle of the jth scatterer.

2.2.3 Mean-Wave Equation
An approximate equation for the mean field can be derived

using the Foldy-'Lax method [57]. This method is v&lid in the

case of small fractional volume.

2-9
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Consider the total field T at some point xt to consist of the

incident field, Iv and the various scattered fields from the in- -

dividual part.clas, i.a.

T Y + To) LTj 9 (2-2-27)
j~l

where T. is the scattered field from the jth parti,7le. The tran-

sition operator for the 4th particle can then be used to relptn the
Jth scattered field to the incident field on the jth particle.

This is expresse'd mathematically as

-f()i J T T)(2-2-28)9 eq -

where T is the transition operator for the jth particle and f(J)

is the field at the location of Ith particle vith the

j. particle remo-'ed. Substituting Equation (2-2-28) into Equation

(2-2-27) and multiplying from the left by L, gives the following

equation

LY - g + jN T (2-2-29)

Averaging the above equation over the ensemble cof scatterer .
configurations yields

N
L<>- g + J1 <Tj (2-2-30)

where the fact thrt L is deterministic has been used. To obtain
an equation for the mean field <T>, the Foldy-Lax approximation

(2-2-31)

is introduced. This seys that the field incident upon the jth

scatterer is approximately equal to the mean field at the jth

3catterer. It can be shown by scaling techniques that this ap-

proximation is valid when the fractional volume occupied by the

scatterers is small. Using this approximation

(j)
'.,<TI(f)> < <T>> <Tj><T>j (2-2-32) ,I

2-10

L -7



, -, 4r , . , ' - - . .

Putting this approximation into Equaition (2-2-30) yields the

following equation for the mean field

L<T> - I<Tj><T> - g (2-2-33)

The equation for the mean field can be simplified by ex-
plicitly writing cut <T > and assuming that all particles are

j
•ilentically distributed in location and orient,tion. Doing this,

*" the expression for <T > becomes --

<T > - dot dOP(st ,O)Tj (St,O) (2-2-34)

where p(st,O)dstde is the joint proba2ility that the position

vector Xt will take on a value close to St and simultaneously thetJ

orientation angle E will take on a value close to e. Note that
the average is identical for all particles since the probability

density is independent of J.

Before proceeding, Equation (2-2-34) can be written in a

* somewhat more convenient form by supprossing the orientation

average and writing

<T> dstp(st)fj (st) (2-2-35)

where i(t), the orientation average over 0 at a particular st,

is given by

T(s) =( Jdep st)T(st,e) (2-2-36)

0

A simplified equation for the mean can now be written. Using

Equati n (2-2-33) in Equation (2-2-33) and noting that the terms

W -of the sum are identical gives

L<Y> - f dstP(St)T(s--t)<> - g (2-2-37)

where the number denaity of the scatterers plst) is just

- Np(st) (2-2-38)
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The notation in this equation can be simplified by defining the

mean wave operator £

I L dStp(St) (St) (2-2-39)

Equation (2-2-37) then becomes

L<Y> - g (2-2-40)

The mean equation as given above is in its most compact

form. For later use, it will prove expedient to write it in ttae

more explicit form

V? + 2 < ( t > (2-2-41)

This equation is an integro-differential equation; however, it 0
is deterministic and not random. Further, the equation substan-

tially simplifies in the case of dipole scatterers as may be seen
by substituting Equation (2-2-21) into Equation (2-2-41) to obtain

[V+kz(l +p(xt) ]<¥(xt)> - -g(xt) (2-2-42)

where it is understood that P(xt) -0 for Et outside of S. This
simplification is possible, however, only at low frequencies

(large wave lengths) where the incident field is essentially con-

stant over the scatterer. Since this low-frequency approximation

involves the assumption that the incident wavelength must be large

compared to the size of the scatterers, scattering from resonant-
size scatterers must be treated by the more general mean Equation

. (2-2-41).

2.2.4 Space-Frequency Correlation Function
*J'

A basic quantity of interest for characterizing such com-

munications channels as the forest medium is the space-frequency

correlation function of the scatterer field, <*(xt,w)**(_t, W).
This is the ensemble average of a field component at Kt and angu-
lar frequency w times the conjugate of the field component evaluated

A

at Et and W". At a fixed point (xt-xt), the resulting frequency
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correlation function indicates the effective bandwidth, and its

Fourier transform gives the delay spread. At a fixed frequency -

(W'), the width of the space correlation function indicates the

minimum separation required for efficient space diversity.

In Section 2.1, it was pointed out that if the medium was "'.4
mostly absorptive in nature rather than scattering, the space-

frequency correlation function can be obtained as in Equation

(2-1-3) by way of the mean field as follows

<V (xtW)¥* (A"t,')_ > W< (xt,W)><Y*(it, W)> (2-2-43)

In general, however, as the frequency increases, scattering be-

comes more important and Equation (2-2-43) no longer holds. The

correlation of the field must then be obtained from first princi-

ples as in the case of the mean.

An equation for the correlation can be obtained by parallel-

* ing the development of the mean wave equation. The equation must

again be derived tnder the assumption of small fractional volume.

However, there is no restriction on the absorptive or scattering

Sproperties of the particles. Because of the amount of technical

detail involved, th.e derivation of this equation has been rele-

gated to Appendix C.

The correlation equation obtained in Appendix C is

f*<T*- J dstP(st)T(St)T*(Sutl<Y*> = gg* (2-2-44)

where

T(!t)T*(st) !dep(el6t)T(te)T(Ute) (2-2-45)

0

Note that, as in Equation (2-2-43), the unstarred and starred
* quantities are functions of unhatted and hatted quantities, re-

, spectively. The mean operator £ is given in Equation (2-2-39).

The correlation equation can be put in a slightly different form

by multiplying from the left by £1-1 *- where the inverse mean

operator f 1 is given by
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- (2-2-46)

and the kernel of the integral operator is the mean Green's func-

tion which satisfies :

IGIit , ) - 6(xt-t) (2-2-47)

The result is

y*> =<><T*> -- * 1 dat()T(T)T*(t)<Y*> (2-2-48)

This is equivalent to the correlation equation given by Ishimaru

[55], although his equation is given for the three-dimensional

scalar case.

As in the case of the mean, Equation (2-2-46) will now be

written out more explicitly

L lx(t)Y*(At)> ->
" Jd'tdxdd -dt (!-t,-t)G' (E'! (2-2 49)

In the above equation it has been assumed that w = w and then this
variable has been suppressed.

As in the case of the mean-wave equation, when the frequency

is low, the correlation Equation (2-2-49) can be substantially

simplified. By using Equation (2-2-21) in Equation (2-2-49), it

is found that

<Ylx)V~ At> (x <V x ><T*lxI) > .

(2-2-50)

-k.1al" dsjtp0(it) G(xt, St) G* (xt 1St)"<T (1t) T* (Et)>

S

The solution to this equation will be found in Chapter 7 for an

unbounded medium (S - m) with constant density p and x - -

S - .
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2.3 Three-Dimensional Scattering Media

2.3.1 Model Formulation

In the preceding section, equations were derived for the

mean and correlation of the field in a medium of two-dimensional

scatterers. Attention will now be focused on ensembles of three- 'tel
dimensional scatterers. These scatterers will be used to model

leaves and branches. Because of the three-dimensional character

of the scatterers, the problem can no longer be scalarized, thus

the vector wave equation must be used.

The configuration of scatterers to be discussed is shown in

Figure 2-3. There are N identical, nonaligned scatterers contained

within volume V. Each scatterer has volume Vp and relative di-

electric constant c A deterministic background medium is also

assumed to be present. The relative permittivity of the composite

medium _s given by

e x) = Cb(X) + X4 (x) (2-3-1)

where (x) is the relative permittivity of the background medium

which is assumed to be unity inside V and arbitrary outside V,

* i.e.

I1 ,x inside V
£b(X) - (2-3-2)

C(X) , x outside V

By appropriately choosing V and £b(X), a half-space or slab con-

figuration of scatterers can be constructed. In addition, the

ground can be accounted for through the background mediu.2. The

Xj(x) used in Equation (2-3-1) is the susceptibility of the jth

scatterer. It can be written as

(Xx , x inside j th scatterer

Xi(x) W (2-3-3)
-- (0 , x outside j scatterer -0-

Here, as in the case of the two-dimensional scatterers, X£ is the

bulk susceptibility of the scatterer material.
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A vector wave equation for the electric field can be obtained

by using Equation (2-3-1) in Maxwell's equations as given by Equa-

* tion (2-2-1). The resulting equation is .

N
VxVxE - kcb(xE - XE- -jwi.J (2-3-4)

A An operator notation is again introduced. By using the fol-

lowing notation

L- Vx(VxX) - kEb(x)L (2-3-5)j

YJ = kOIXj (x)_, (2-3-6)

Equation (2-3-4) can be written as

(L - Z.) "_ - (2-3-8)

The double underlined notation is used to signify a dyadic; thus

* L and V are dyadic operators. The unit dyadic I has been intro-

duced in the definition of L and V. As its name indicates, it

has the property that I-T --1T [see Appendix D). This pro-

perty is used to reduce the abstract form of the vector equationI• as given in Equation (2-3-8) to the standard form as given in
Equation (2-3-4). ,

One of the principal advantages of the abstract operator no-

tation is now evident. A comparison of the vector wave equation

as given by Equation (2-3-8) with the two-dimensional scalar wave

equation as given by Equation (2-2-10) shows that the two equations
have basically the same form. Thus derivations carried out in the

vector case will paralll those already performed in the scalar

case.

2.3.2 Single-Scattering Problem

Before a mean equation can be derived for the field, the

scatterers must be electromagnetically characterized. The dyadic

transition operator and the dyadic scattering amplitude can be
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used for this purpose. The development in this subsection paral-

lels the development for the scalar two-dimensional problem as

given in 2.2.2.

Consider a three-dimensional scatterer located at the origin.

The electric field satisfies the equation

- •(2-3-9)

where

v = kX(x)j (2-3-10)

and L, are defined in Equations (2-3-5) and (2-3-7) respectively.

Here, as before, X(x) is X inside the scatterer and zero outside

the scatterer. The orientation of the scatterer as specified by

the polar angle e and the azimuth angle * is contained implicitly

in the definition of X(x), i.e., X(x) -X(x, 9,O).

To define the transition operator, the field is broken up into

a free-space component -i and a scattered component so that
- 1" i 11 Is (2-3-11)

where k'ji =g and L'-VY. Here as in the scalar case, V- can

be viewed as equivalent sources 9eq that create the scattered

field. The dyadic transition operator can now be introduced. This W
operator acts on the incident field to produce the equivalent

sources; thus

%eq fT•j (2-3-12)

Since the relationship is linear and bounded, Equation (2-3-12) can

be written explicitly as

(eqlX) = Jdx't(x,x')- .(x') (2-3-13)
iq-,

where t(x,x l) is called the transition operator kernel. The know-

ledge of t completely specifies the scattered field once the inci-

dent field is given.

Tho relationship between 1i and 9eq is substantially simpli-

fied in the low-frequency limit. In this limit the induced source

distribution can be approximated by an electric dipole. Thus

J
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2eq -JW3-eq -Jiw. [Jp.6(x) 1 (2-3-14)

where p is the electric dipole moment of the induced source dis- 0

tribution and 6(x) is the three-dimensional Dirac delta function.

The dipole moment p can be directly related to the incident elec-

tric field ji by the dyadic polarizability . This relationship

is

E "ol to (2-3-15)

Comparing this equation with Equations (2-3-12) and (2-3-13) the

transition operator and its kernel can be written as

- ka6(x) (2-3-16)

and

t(x,x') - k.ca6(x)6(x') (2-3-17)

The far-field behavior of the scatterer's response to a plane
wave can als be used to characterize the scatterer. Consider a

plane wave

S) e -jk~i 'x (2-3-18)

incident upon the scatterer. Here !1 is a unit polarization vector

and i is a unit vector in the direction of propagation. The scat-

tered field in the far-field zone of the scatterer is written as

e-jko x  x'
Isx W f(0,i1) • x , o- (2-3-19) .

- where f(o,i) is the dyadic scattering amplitude. Here o is a unit

vector in the direction of observation and x- i.

The scattering amplitude f can be understood more easily in

terms of its components. Todo this, incident and scattered polar-
-* ization vectors need to be defined. An arbitrary incident polar-

ization vector S can be decomposed into two orthogonal components;

call themh? and v0i indicating horizontal and vertical polariza-

tion, respectively. Similarly, the scattered field can be decom-
eP posed into two mutual orthogonal components h* and vY. The no-

tation has been employed that a superscript zero indicates a unit

vector.
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By using the unit polarization vectors introduced abo.ve the

dyadic scattering amplitude can be written as -

f - f hh + f hv + f vh + f vv* (2-3-20)
- hh;.-Bsi hvms-i yb-s-gi vv-s-i (30

where the components f are given by
pq

fq - p,qc{h,v) (2-3-21)

Thus if the incident polarization is horizontal, i " h, the

scattered far field will be

e-Jke x  .

' h (fh + fvhY. .x (2-3-22)

The dyadic scattering amplitude f can be directly related to

the Fourier transform of the transition operator. This relation-
ship is derived in Appendix A of Lang [57]. It is

f(o,i) = 2 2(ioo). k (2-3-23)

where .:

ht(kk 1 dxdx't(xx')e (k- x ' k "x') (2-3-24)
TheW)23r)

The relationship between f and t as given in Equation (2-3-23)

is in dyadic form. By using the polarization unit vectors already

defined, the unit dyadic can be decomposed as follows

V = + vV; +,00

or (2-3-25)

NMI + + i

This is a result of the fact that I can be decomposed in the above

form by any system of mutually orthogonal unit vectors. The scalar

form of the relationship can be found by dotting Equation (2-3-22)

from the right by h or vi and by dotting from the left by h; or

v and then using Equation (2-3-25). The result is-- 2

f (o,i) 2w 2tp(koo,koi) , p,qc{h,v} (2-3-26)
pq- pq

where tp- . .

Both the transition operator and scattering amplitude forms of

characterizing the scatterer are used. Usually the transition
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operator is employed in the derivation of approximate equations,

while the scattering amplitude appears when these equations are

0 solved.

2.3.3 Mean-Wave Equation

An approximate equation for the mean field will now be
given. The method for obtaining this mean field equation exactly
parallels the two-dimensional procedure as given in Section 2.2.3.

As a result, the derivation will not be given here.

* Starting with the vector wave equation as given by Equation
(2-3-8), introducing the dyadic transition operator, averaging

and using the Foldy-Lax approximation, the three-dimensional
vector mean-field equation is found to be

L<>- J dsp(s)T(s)l<> ( (2-3-27)
v

where 1(s) is the orientational average for a particle located at
* 8, i.e.

V 2wt

is do JOdp(eOjS)(se1.) (2-3-28)
0 0

where p(6,O) is the angular probability density function given the
particle is located at s. ;'i

As before, it will be of use to write the mean-field equation

explicitly. Equation (2-3-27) becomes

, ~VxVx<E (x) > -k bI)< x :
_ kcb (x) <E (x) >

- ds(s)pdx':Ex-s,x'-s')'<E(x')> -jwulX) (2-3-29)

Equation (2-3-29) differs from the vectcr Helmholtz equation only
because of the added integral term arising as a result of the
scatterers. A simrii'scatt*rer-related integral term -ir also
observed An the case of two-dimensional scatterers [Equation

2-2i±
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The mean-field equation can be substantially simplified in

the low-frequency (Rayleigh) regime. This is easily shown by

substituting Equation (2-3-17) into Equation (2-3-29) and obtain-

ing

VxVx<E> - ko[ b(x)l + pctl<E> = -jwV!J(x) (2-3-30)

In this low-frequency (Rayleigh) regime where the wavelength is

large relative to the size of the scatterers, it is apparent from

Equation (2-3-30) that solutions to the mean-field equation can

be obtained using classical techniques. 61

2.4 Three-Dimensional Scattering in Two-Dimensional Media

In this section, mean-wave propagation in a medium of two-

dimensional scatterers with three-dimensional sources 2(x) is b

considered. The equation for the mean field is derived from the

three-dimensional mean-field equation given in Equation (2-3-29).

The scattering being considered differs from the two-dimensional

waves considered in Section 2.2 because it doesn't reduce simply V

to a scalar treatment; in general the complete vector problem

must be considered. This results from the fact that three-

dimensional sources produce waves that travel at oblique angles

with respect to the scatterers.

The scatterers are characterized by the dyadic transition

operator t(x,x') as defined in Equation (2-3-13). Since the

scatterers do not vary with z, translations of the incident field

and of the equivalent or induced sources by the same amount in

any direction will have no effect on the transition operator;

thus t(xt,x?,z,z') is just a function of z-z' or

t(xx') x (2-4-1) 

This is analogous to the impulse response of a time-invariant

filter; one obtains the same response independently of when the

impulse was applied.

Now using this two-dimensional form of t in Equation

(2-3-39),
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2O

VxVx<E(xtz)> - k <%(xtz)>

-~ ~ J uJsP()jdtdz Ot(Etttz'
S

<E(xSt,z)> = 9(xtz) (2-4-2)

Here it is assumed cb(X) = 1, and for all x that the total volume V _ i

under consideration is an infinite z-directed cylinder having

cross-section S. An examination of this mean equation shown that
it is Fourier-transformable in the z direction. Introducing the

Fourier representation.

>e;kzZ
<E(Et,z)>= idkzC<(xt,kz)>e (2-4-3) A

into Equation (2-4-2) yields

_ - k!<E(Kt k2)>

- dstP(st)Jdxtq(xt-stixt-stvkz)

<E_(x.kz)> "(Et,kz) (2-4-4)

i where V =V t - jkZz V x/ax + yea/ay

A r jk z
=k dzt(?t,_,z)e (2-4-5)

The hat notation has been used to indicate a Fourier transform

with respect to z. The transverse density p(st ) is related to

p(s) as follows

Jdsz p!) N NJds p(s) =Np(St) = (2-4-6) L

Thus p t is measured in units of particles per area rather than

particles per volume.

As in the case of scalar two-dimensional fields and vector
three-dimensional fields, the fields scattered by an isolated

* 2-23
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two-dimensional scatterer can be characterized by a scatt ring

amplitude. The difference between this vector two-dimens onal

scattering amplitude and the scalar case is that the direction

vector i of the incident plane wave of unit amplitude and polar-

ization qO is not necessarily perpendicular to the generating

element of the cylindrical scatterer (z-axis). The dyadic
scattering amplitude is defined in terms of the transformed

scattered field as follows

-jktxt-jkzz

e (x~t,z) " f(o,i)- (2-4-7)

t

where

i it + izO i z -i Z' (2-4-$)

an d t + izZ" (2-4-9) 1
The wavenumber in the z direction is k k i This is deter-

mined wholly by the incident wave. Because of the two-dimen-

sional property of the scatterer, the wave number k in preserved
by the scattering process; thus the scattered wave in direction

must also have a z component i This means that scatteriag is

restricted to lie on a cone of angle ei as shown in Figure 2-4.

Since both f and t describe the single-scattering process,

they should be related in a similar manner to the f and t of the

three-dimensional scatterers. In Appendix B, it is shown that

this is indeed the case. The result is

flo, i;k )  y Sl_-o)- (ktot,ktijt;kz ) - ( I - i i )  (2-4-10) ..

where y is given by Equation (2-2-24) and

t(kt,!k; k z ) = (2t) _ dx_(xx (2-4-11)
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These relationshipa will be used in Section 4 where expressions
are derived for~ the propagation constants of the mean wave in an
unbounded muedium of two-dimensional scatterers.

V~
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3.0 Dyadic Scatterinu Amplitudes

* The theory of electromagnetic scattering presented in Section

2 asaumed the knowledge or availability of the dyadic transition

operators (t) or dyadic scattering amplitudes (f). It is the pur-

pose of this section to provide the dyadic scattering amplitudes

* for trunks, branches and leaves.

For both two- and three-dimensional objects, the scattering

amplitude is determined by illuminating the object with a unit-

amplitude plane wave

E4(x) al-Jki'x) (3-0-1)

where i is a unit vector in the direction of propagation and SO

i: the unit polarization vector. The -i is often specified by

the spherical angles 6i and #i measured with respect to a polar

axis z. One can then write:

-i - xsin6i co5*j + Y,"sine, sint, + zcosOi (3-0-2)

Incident waves with both horizontal, h , and vertical

polarizations are considered. Here the horizontal polarization

vector hi is taken parallel to the x-y plane of the forest floor.

More specifically,
IOle.

" " I _(3-0-3)
li x z0l

The vertical polarization vector is taken perpendicular to both
i and hI; thus

vI - hi x i (3-0-4)

For three-dimensional scatterers the dyadic scattering am-

Iplitude is defined by

*-jk,(o.x)
E (x) ' .(o,i) -. e C (3-0-5)

where o is a unit vector in the direction of the observation

point x. The o vector can be described by angles es and
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I"

measured with respect to the z and x axes, respectively. In terms

of these angles, S is written as

o- xsine cos#, + 'sinO sin# + zcose5  (3-0-6)

The scattered vave in general can have components in the horizontal

hes and the vertical v directions. These scattered polarization '

vectors are defined by

o X Z"

l° x X-°1

(3-0-7)
-x o

As pointed out in Section 2, f(ori) has only four components

since o-(o,i) =0 and (oi).i=0. Thus,

f(o,i) f fhhOhi +vhh Vi + + f vv. (3-0-8):vh-" at!' +fvv-s-z .!

The dyadic scattering amplitude for two-dimensional scatterers

is identified as the coefficient of a cylindrically-expanding wave:

-Jk(o.x)
(x) W f (o (3-0-9)

where 0= - e" This restriction on the angle 0 results from

the requirement that scattered fields have the same variation in

a as the incident wave. This means that o must lie on the sur-

face of a cone of angle i""

3.1 Infinitely-Long, Circular Cylinder (Tree Trunk)

In this section, the dyadic scattering amplitude for an

infinite circular cylinder of radius a and dielectric constant

C is given. Assume that the axis of the cylinder is the polar

z axis (Refer to Figure 3-1]. There is no need to find the

scattering amplitude from first principles since the required

results are given by Wait [82) and summarized by Ruck et al.

[78]. These results are:

3-2
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fpp(oi = *ji/4 J (-1) "Cn , pc{h,v] (3-1-1)
pJ-- i/kAsine i n=-.

f(0) C -e- (3-1-2)•h -- 4 /kosine i n- (-1

where

v P_-q 2J (xo)H(2) (xolJ2 (x
= p nN [q H -(2) N12 (3-1-3)

n' 0  n) (x0 lJnXl) I

MN n -qJ (N0 )H. 0 n1)
nn nlc~' (3-1-4)

n qH 2 J (x 2

-J2 0 nnx (3-1-5)

x0  k a (3-1-6)

x k a2£-COs 2 e (3-1-7)

k~a t~CO 8~.(3-1-8)
n 2e

kea IC -cos 8i  sin2e i  "

V = (' .nlXl) - SoJn(Xo)JnlXll (3-1-9)

(2)n n (l OJ(2O),nx

IP rlH(2) (xo)Jn(xl - o (2),x Jn lx l ) (3-1-10)
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Figure 3-1: Infinitely-Long Circular Cylinder
Scattering Geometry
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n =ln2)(x)Jn (xl) - s (2)(x 0)Jn(X1) (3-1-11)

Mn - rJnX0)J(x 1) - s0JAx 0 )Jn(x1  (3-1-12)

I-I

s0  s £ (3-1-13)
0 "i £-cos2 i,

* r1 =  
1  ~(3-1-14) MA

E g-Cos 2ei0

wi th J n ( ) being the Bessel function of order in and H (2 n . being
the Hankel function of the second kind of order n. The primes

over the cylinder functions mean derivatives with respect to their

arguments.

An examination of the results shows that, in general, scatter-

* ing from the cylinder gives rise to depolarization since fh 0..

It should be noted that this depolarization does not exist when

the incident wave is normal to the cylinder (6 =W /2) because

then qn 0. The cross-polarized terms are also zero in the for-

* ward-scattered direction. In this case, e = i+w which leads to

Cv n -_n~h (n = 1,2,...) and C0 - 0. Thus,
(i 'i )  (i,i) = 0 (3-1-15)

3.2 Finitely-Long, Circular Cylinder (Branch)

Consider a planar electromagnetic wave to be incident upon a

finitely-long, circular cylinder of complex relative permittivity

ER . Without loss of generality, the longitudinal axis of the

cylinder can be taken as inclined to the z-axis by an angle 9,

and the plane defined by the cylinder axis and the z-axis as ro-

tated an angle * from the x-z plane [refer to Figure 3-2]. An

incident electric field of unit amplitude can be represented as
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N p

=x = ok(i.x) (3-2-1)

where

ko "Vr o (3-2-2)

* -j = x~cosfi sine i + y°sin*i sinei + zocosei  (3-2-3) kj

x= _xx + yOy+zz 3_4

and 61 is the angle between the direction of the incident wave, --

and the z-axis, and *i is the angle between the plane defined

by i and the z-axis and the x-z plane.

If the cylinder is sufficiently long, and thin in comparison.I

to the wavelength within, the induced electric field Ei within

the cylinder may be ascertained using quasi-static techniques.

Under this approximation, the electromagnetic boundary condition

requiring the continuity of the tangential field components (E

and H) can be employed to show that the induced electric field

component directed along the axis of the cylinder is given by

r E=r• E. (3-2-5)

whereas the induced electric field component normal to the axis

of the cylinder is given by

_r x+E=r i  (3-2-6)

where r0 , a unit vector directed along the axis of the cylinder,

is given by

r= x~cos* sinO + yjsinf sine + zocosO (3-2-7)

As a consequence of Equations (3-2-1), (3-2-5), and (3-2-6), the

induced electric field within the cylinder may be shown to be

E X (!*rOC+ rSGr~* eji (3-2-8)

As a consequence of the radiation condition, the electric

field E in free-space attributable to the current distribution J

within the closed volume. V is given by

p
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E(x) , -jiWiJ dx'G(x,x') J(x') (3-2-9)

VP p

where G(x,x') is the free-space dyadic Green's function [126].

Although the total current induced within the finite cylinder

isC
J =JW.E (3-2-10)

that part of the total current responsible for the scattered

field E is only

Js= jWEc.(E-l)E - jWE.XtEt (3-2-11)

where X is the susceptibility of the cylinder. Substitution of 9
Equation (3-2-11) into Equation (3-2-9) provides the following
relation between the field E , scattered by the cylinder and the 60

field E induced within the cylinder

Es(x) = k!X4 dx'G(x,x')-E,(x') (3-2-12)

The far-field free-space dyadic Green's function is given

by

G(XX') - e-jk[o (x-x')]

. .. 4,rx (3-2-13)

with

o x~cos*s sine5 + ysin ine + z0coses  (3-2-14)

Substitution of Equations (3-2-8) and (3-2-13) into Equation

(3-2-12) yields

Es(x) = f ( (3-2-15)-- x

where f, the dyadic scattering amplitude, is given by

f(o,i) = ( - ) - Kr Or + 2 (I- rOr (3-2-16)

3-8
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and

k - k. (o - i) •r (3-2-17)

- (WXt) (wa) (k./2w) 2  (3-2-18) 1
3.3 Circular Disc (Leaf)

Consider a planar electromagnetic wave to be incident upon a

circular disc of radius a, thickness t, and complex relative per-

mittivity £. Without loss of generality, the orientation of the

disc can be defined in terms of the two eulerian angles 8 and .
shown in Figure 3-3. An incident electric field of unit amplitude

can be represented as

E.V(x) !I 5 -jko(i.x) (3-3-1)

where
k, (3-3-2)

-i = xcos*i sinei + yOsinfi sinGi + z*coseO (3-3-3)

x xx + y'y + z6z (3-3-4)Wi

and ei is the angle between the direction of the incident wave and

the z-axis, and #j is the angle between the x-z plane and the

plane defined by i and the z-axis.

If the disc is relatively thin (a>>t) and the radius large in

comparison with the wavelength (a>>), the induced electric field

E within the disc may be approximated by th electric field in

an unbounded slab having the same orientation as the disc. Under

this approximation, the electromagnetic boundary condition requir-

ing the continuity of the tangential field components (E and H)

across an arbitrary interface can be employed to show that the

induced electric field within the disc is given, approximately, by
e-jko (it. x)"'.".

E£(x) = E(n)e (3-3-5)

3-9
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Figure 3-3: Circular Disc Scattering Geometry
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where, 0 + Jn -':-n

E(n) - geqe Kn + .qe e- Kn (3-3-6)

and

n= x~sino sine - ycoso sine + zocose (3-3-7)

-- n n -x

it  _i - (n° i)n (3-3-9) j
k(c- 2, = litl (3-3-10)

The unit polarization vectors appearing in Equation (3-3-6) depend

upon the relative orientation of the disc. As a consequence

i x n0)
to _ n(3-3-11:,

* ) :: (3-3-12)

and i± [it ± n°(£ - i)] (3-3-13)

The amplitudes of the induced field components, eq, are given by

•+ tqe-Jk (K-ko) t/2 l+ q

e=- (3-3-1.4)
1 - rd).Ii.

eq =r qeejKt (3-3-15)

where

I' r h (ci)t (3-3-16)

q ~ I '~t a

r rv I 20£-1±) 2 (-it) (3-3-17)
V (Cj~ + Ejl-t
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q 2) is (2-3-19)
(C .i )' + C (1-i) = ,

As a consequence of the radiation condition, the electric field

scattered by the disc E and the electric field induced within

the disc are related by the Kirchhoff integral
_(x) - k X '(xx)EW) (3-3-20)

V

wher G~~xl isthefree-space dyadic Green's function and X
is the susceptibility of the disc (XL = C€ - 1). The far-field

free-space dyadic Green's function, needed to find the dyadic
scattering amplitude f which has been defined so that

-jkox

E(x) e= f • q e (3-3-21)

is given by
,-jko to- (x-Xl) I

G( =" (-"') (3-3-22)
4irX

If Equation (3-3-20) is generalized to accommdate a dyadic field

representation so that

- d(x) - kX4 d) (3-3-23) .

VPvp

then it is apparent from Equations (3-3-21), (3-3-22), and (3-3-23)

that

f(o,i) ,, (X)(/2') dx'l-oo)-Ex jk(o-x) (3-3-24)

I. and where, as a consequence of Equation (3-3-5)

E(x) [e+e j Kn + e-e -JKn le - j k (itX) (3-3-25)
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with

e - e ;l_ + ( (3-3-26)

Substituting Equation (3-3-25) into Equation (3-3-24) and intro-

ducing the identity "'( )

_° *t + (o-nlnG (3-3-27)

yields

f(Oi_ (WX L) (kg/21r) 2 dx' (-oo) .eKn + e-e - I]

Vpj

ejk° (onO) ke --- (3-3-28)

where

t a-t - it (3-3-29)

For a circular disc of radius a and thickness t, Equation I
(3-3-28) can be evaluated directly to obtain

f(o,i) = (rX) (k./2wl l(a/vt)Jl(27ravt)]

Q1- 0) [e seince~ + e-sinc6j1 (3-3-30)

*where J 1 . 1 is the Bessel function of order unity and

- (kot/2)[(o'n c;(t-i. )%" (3-3-31)

l-tl = t (k/21r) (C2 + n 2) "

• -cose[sinei sin(4-* i ) + sine, sin(*-$5 )]

- sine[cose. + cose s] (3-3-33)

n =sinei cos(#-*i) + sine. cos(l-* 5 ) (3-3-34)

The dyadic scattering amplitude of the circular disc as

given by Equation (3-3-30) simplifies substantially in the case

of an electrically thin disc where
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ke 0 t < < .1 (3-3-35)

In this case, the phase angles Kt and e are small and Equation
(3-3-30) can be approximated by

-(o 0). =(7rX) (k l l /2 l) 2t( (a/vt)l J(2wavt) ]

i ) (-oo) q ++X,[_. )n (3-3-36)

For this thin disc case in the low-frequency (Rayleigh) regime

where, in addition to inequality (3-3-35),

a << A (3-3-37)

then avt =0 and

f(o, il.a - Xtt(koa/2) 2 ioo). [ - * n (3-3-38)

Note that in the direction of forward scatter where o i,

es - W - 0 ' r " Wi + W (3-3-39)

v t - 0, and Equation (3-3-36) for the electrically thin disc

reduces to the Rayleigh result of Equation (3-3-38).

I
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4.0 Coherent Forest Scattering

A physically appealing representation for the mean field can

be obtained by postulating that the mean (or coherent) field sat-

isfies Maxwell's equation "in the mean" and that the ensemble of

discrete scatterers can be replaced by an equivalent continuous

medium described by an effective dyadic permittivity L, or alter-

natively, by an effective dyadic susceptibility . Because is

found to be directly proportional to the fractional volume occupied

by the scatterers, it is easily scaled with respect to the forest

density and therefore preferable to e for characterization of the

equivalent continuous medium. In Section 4.1, general expressions

are derived which relate 2 directly to the dyadic scattering am-

plitudes . In subsequent sub-sections, these expressions are

employed to determine for tree trunks, for branches and leaves,

specific expressions for their respective effective dyadic suscep-

tibilities. These specific expressions are exemplified by calcu- I
lations which are then compared with experiment. It may be noted
that, as all forest constituents are assumed uniformly distributed

about the vertical, the equivalent continuous medium is uniaxially

anisotropic.
Plane-wave propagation within an unbounded, equivalent con-

tinuous medium is considered in Section 4.2. Here, a general

dispersion relation is derived relating the plane-wave propagation

constants K of the mean (or coherent) field and the dyadic scat-

tering amplitudes i. In subsequent sub-sections, this dispersion

relation is employed to determine, for plane-wave propagation

through an unbounded forest of tree trunks, branches, or leaves,

specific expressions for the wave-propagation constant. The imag-

inary part of the wave-propagation constant, the specific attenua-

tion, is numerically evaluated and compared with experiment.

Experimental verification of the electromagnetic model and,

ultimately, prediction of radio system performance requires the

identification of measurable quantitative parameters to charac-

terize the forest. In Section 4.3, some of these parameters are

identified and related directly to the specific attenuation.
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4.1 Effective Dyadiic~ Perxnittivity of the Forest

The mean electric field propagating within an unbounded en-

semble of three-dimensional scatterers can be determined, as shown

in Section 2.3, from the mean wave-equation

-<JdsP)>)dx't(x-sx 1x-sPE(x1)> -jwp,*J(x) (4-1-1)

where

L= VxVxI k 2,I (4-1-2)

From the physical viewpoint, a more appealing representation of the

mean field can be obtained by postulating that the mean field sat-

isfies Maxwell's equations in-the-mean and that the ensemble ofI
discrete scatterers can be replaced by an equivalent continuous
medium described by an effective dyadic permittivity c. If

Faraday's iitww

Vx<E(x)> -- jwu,<H(x)> (4-1-3) .

i~s substituted into the first term of Equation (4-1-1), then

Vx<H(x)> jwc0CI'<E(x)> + ± dsp(s)Jdx't(x-six'-s)

< E(x')> + J(x)J (4-1-4)

and, by Ampere's law

Vx4CH(x)> -jw<D(x)> + J(x) (4-15

it follows that

<Dx) Ec[I-<E(x)> + L dep(s dx'. x- ,x'-s)
_~ 02 ~ ~ X - -

<E(x')>] (4-1-6) S

Taking the Fourier transform with respect to x transforms Equation

(4-1-6) into

<D(k)>=c,[I-<2(k)>+.4 Jdap(s)Jdx'j(k,x1-s).<E(x1)>eA5*! (4-1-7)
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The second integral appearing in Equation (4-1-7) may be recog-

nized as a convolution with respect to the parameter s; as a

* consequence

D(k)> [I<E(k)>_ _ + (2w) dsp(s) 't(kk').
k f " j

* • <(E(k)>e((kk) ' ] (4-1-8)

If the number density p(s) is independent of location so that

p(s) - p (4-1-9)

then the order of integration in Equation (4-1-8) may be inverted P4
with the result

- ~~(2,r) 3p ~k'*~k>(--0<D(k)> - £.[i + 2 .Ik,k)-<E(k) > (4-1-10)

The constitutive relation

D co" E (4-1-li)

* indicates that Equation (4-1-10) may be re-written in the form .1

<5(k)> > <E(k)> (4-1-12)

and that

• * = I + (2r)'p t(k,k) (4-1-13)

is the effective dyadic permittivity of the equivalent continuous

medium. Note that c depends upon the direction of propagation

through the wave vector k; such a medium is termed spatially dis-

persive. Because & is a dyadic, the medium is termed anisotropic.

It is also interesting to note that, far from the source where the

* mean field <E(x)> is essentially planar, only those components of

. which are orthogonal to the direction of propagation will be of I

significance. This is consistent with the relation established in

Section 2.3 between t and the dyadic scattering amplitude of f

[refer to Equation (2-3-23)].

In the low-frequency (Rayleigh scattering) limit, where each

, scatterer can be represented as an electric dipole with dyadic

polarization a, the Fourier transform of Equation (2-3-17)

*Landau and Lifschitz.
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.4*

- k/(2w)' (4-1-14)

can be substituted into Equation (4-1-13) to yield

. + P-.
in the Rayleigh regime. Note that in the Rayleigh regime,

is no longer dependent upon the direction of the wave vector

k; however, the medium can be anisotropic.

The effective dyadic susceptibility can be defined as

- - (4-1-16)
so that, in general, as a consequence of Equation (4-1-13)

( - 2(k,k) (4-1-17)

However, in the Rayleigh regime, as a consequence of Equation (4-1-15)
X = p2 (4-1-18) %.1

It is apparent from Equations (4-1-17) and (4-1-18) that the ef-

fective dyadic susceptibility is directly proportional to the num-

ber density of the discrete scatterers. For this reason, is

often preferred over e for the characterization of the equivalent V

medium. Because of the assumed exp{jwt) time-dependence of all

field quantities, it proves convenient to define the real and

imaginary parts of X so that A 1 X-U

In general, the effective dyadic sysceptibility X can be

written explicitly in terms of the unit vectors h, v, and i.
Here, i0 is a unit vector in the direction of propagation and h-

and v" are the polarization vectors. In component form, X is

- = XUB a, lt{h*,v',iO }  (4-1-19)

There are nine components. However, only Xhh, Xhv ' Xvh ' and Xw

are important. The other components are either zero or do not

contribute at this level of approximation. These four principal

components of the effective dyadic susceptibility can be deter-

mined directly from the components of the dyadic scattering ampli-

tude f. Equations (2-3-26), (4-1-17), and (4-1-19) yield

f (i,i) p,qc{h,v} (4-1-20)
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The development presented above leading to the concept of an
effective dyadic permittivity was predicated upon the mean-wave

!* equation for three-dimensional scattering from three-dimensional

scatterers [Equation (4-1-1)]. An analogous result, the mean-

wave equation for three-dimensional scattering from two-dimensional

scatterers, was developed in Section 2.4 [Equation (2-3-29)]. As

* a consequence, an effective dyadic susceptibility for a continuous

medium equivalent to an unbounded ensemble of two-dimensional scat-

terers can be analogously defined with the effective dyadic sus-

ceptiblility given by -

(2 )2 P(k)
2tk z ) (4-1-21)

ko ,

Here again only the Xhh, Xhv, Xvh and Xvv components are important.
Q, They can be directly related to the four components of the two-

dimensional dyadic scattering amplitude by employing Equation (2-

4-10) in component form. The result is

pq -pq (2w)2 p fp(ii) F p,qc{h,v} (4-1-22)

where y is given in Equation (2-2-24).

4.1.1 Effective Dyadic Susceptibility of Trunks

The radiowave propagation model developed in this report

views the forest as a random ensemble of tree trunks, branches and

leaves having prescribed location and orientation statistics. Tree

trunks are modelled as vertical lossy dielectric circular cylinders

of infinite length. The salient scattering properties of individual

cylinders can be characterized in terms of the dyadic scattering
amplitude f which was determined earlier in Section 3.1. The

effective dyadic susceptibility for an unbounded forest of tree

trunks can be found using Equation (4-1-22).

_ jp4 PP) +2 C pp) pc{hv} (4-1-1-1)
(k.) sin0 ' i
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The C are given by Equations (3-1-3) and (3-1-4). As wasn
pointed out in Section 3, there is no depolarization of the elec-

tromagnetic wave in the forward scattering direction by vertical

circular cylinders, i.e. fhv(Di) fhv(ili) 0, thus ,

Xhv ' Xvh 0 (4-1-1-2)

and the equivalent continuous medium for vertical trunks is uni-

axially anisotropic.

The effective dyadic susceptibility of tree trunks as ex-

pressed by Equation (4-1-1-1) is exemplified in Figures 4-1 aiid

4-2 for the case of a radiowave propagating parallel to the forest

floor 18i= 90 °1. These calculations are based upon a tree trunk

radius of 10 centimeters and a trunk number density of 1 trunk per

square meter. Three models are employed to describe the permit-

tivity of the wood [refer to Appendix A], but only CyberCom model

III can be considered realistic. The horizontal components of the

effective dyadic susceptibility (denoted by Xhh, in general, but I
here for ei=900 by Xt) are shown in Figure 4-1; the vertical com-

ponent of the effective dyadic susceptibility (denoted by X w , in

general, but here for e.-9*o by Xz) shown in Figure 4-2.i9

It is seen from these figures that the effective dyadic sus-

ceptibility I is relatively insensitive to the Cy_4rCom model

employed for wood permittivity. Further, although the resonant

response apparent in these figures is not shown in detail (calcu-

lations having been made at 100 MHz intervals), it is clear that

for tree trunks of this (10 centimeter) radius, resonance plays a

major role in the frequency band 200 - 2000 MHz. In this frequency 1
band the real parts of the dyadic susceptibility (Xj,X;) decrease

roughly as the square of the frequency; the imaginary part of the

horizontal component (X") decreases roughly as the two-thirds

power of the frequency; and the imaginary part of the vertical

component (X") decreases roughly as the five-thirds power of the

frequency.

Tamir [107], concerned only with frequencies below 200 MHz,

has suggested that the forest could be represented by an effective
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scalar permittivity (C') of about 1.1 and an effective conductivity

() of about 10" mhos/meters [refer to Figure 1-1. The relations -.

X= ' - 1 (4-1-1-3)

X= o/wC. (4-1-1-4)

can be used to deduce the effective scalar susceptibilities sug-

gested by Tamir; these susceptibilities are also plotted in Figure

4-1 and 4-2. It is apparent from these figures that the frequency-

independent value of X' suggested by Tamir differs significantly
from the inverse frequency-squared dependent of X., X; found by
CyberCom; the inverse frequency-dependent value of X" suggested

by Tamir is about one order of magnitude smaller than the corres-

ponding values of XZ, X" found by CyberCom. Near agreement between6 X" and X", X" could be achieved by decreasing the assumed tree

trunk number density from 1 tree trunk per square meter to 0.2 tree

trunk per square meter. Although not shown in this figure, the
low-frequency (Rayleigh) behavior of the vertical component (X,

* XZ) agrees with Tamir's model for CyberCom wood permittivity models
II and III. This Rayleigh behavior is also anticipated in the

frequency band 200 - 2000 MHz for tree trunks (and branches) of

extremely small radius (less than 1 centimeter).

4.1.2 Effective Dyadic Susceptibility of Branches

Branches are modeled as lossy-dielectric circular cylinders

of radius a and length £. The salient scattering properties of

individual finite-length cylinders can be characterized in terms of, 1
their dyadic scattering amplitude f which is given in Section 3.2.
The component susceptibilities for an unbounded forest of branches

can be found by employing Equation (4-1-20).

The four components of the dyadic scattering amplitude in the

forward direction o=i can be obtained from Equation (3-2-16) by

dotting it from the left and right with the horizontal and vertical

polarization vectors. Thus,
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(iji) = (kP)

2 XI
2p"-q °  :-" ~(4-1-2-1) ":

:.: 2+ X £ :

The mean scattering amplitudes are given by

.C dejdp(O,)f ii)(4-1-2-2)Spq(i,i) = pqli)

0 0
where p(e, ) is the probability density function of branch inclin-

ations. If it is assumed that the branches are distributed uni-

formly in the azimuthal Angle * and that all have the same polar

angle eb then 6( -e )

p(e,O) - (4-1-2-3)
27r

Now, using i [as given in Equation (3-0-2)] in Equations (3-0-3)

and (3-0-4), the following expressions can be obtained for h

* and v?

h= -xosino i + y0 cos~ i  (4-1-2-4)

= -xcos*i cosei - ysin~i cos8 i + z.sinei  (4-1-2-5) 1
In addition r, which is a unit-vector directed along the branch,

useadito r frc the uni vector :A. ~ad r
can be written as17

ri t x~sin sine + ysino sine + zcose (4-1-2-6)

When thiese expressions for the unit vectors ti,0 0 and rO are''-,",

used in Equation (4-1-2-1) and the result averaged over the prob-

ability density function given in Equation (4-1-2-3)

fhh(ii) ka)2X sin + ](4-1-2-7)
2 210
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fw i Ii) = 
(!s±iner

_ _ (2+XL ) n b

+ 2sin2 e Cos 2 eb) +22 (4-1-2-8)
2+X X1

are obtained. The depolarized forward-scattering amplitudes both

average to zero so that

fhv(7,5)" fvh(iwi) = 0 (4-1-2-9)

The four principal components of the effective dyadic suscepti-

bility are then found by substituting the above results into

Equation (4-1-20) and obtaining

X =rX pa2 r sin2 eb + 2 (4-1-2-10)

irpaSh t bb0
[( 2+X£ ) 2+X£ i i

Xw  = TXgpa 2g 1[ (2 (cos 2 ei sin28 b + 2sin 2 i COS28 b )

+ (4-1-2-11)
2+X~

Xhv Xvh=0 (4-1-2-12)

Thus the equivalent continuous medium for an azimuthally symmetric '1
distribution of branches is uniaxially anisotropic.

The effective dyadic susceptibility of the branches as ex-

pressed by Equations (4-1-2-10) and (4-1-2-11) is exemplified in
Figure 4-3 for the case of a radiowave propagating parallel to

the forest floor (6i -90"). These calculations are based upon a
branch radius of I centimeter, a branch length of 1 meter, and a

branch number density of 1 branch per cubic meter. All branches

are assumed to be inclined 45 degrees with respect to the vertical,

* but uniformly oriented in azimuth. Three models are employed to

describe the permittivity of the wood [refer to Appendix A], but

only model III can be considered realistic. The horizontal
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and vertical components of the effective dyadic susceptibility

(denoted by Xhh and Xw, in general, but here for e. =90* by Xt
0 • and Xz , respectively) are shown in Figure 4-3. Assumptions im- S

plicit in the development of the thin-branch scattering model

preclude the consideration of branches of significantly greater

radius over the frequency band 200 - 2000 MHz.

In the thin-branch frequency regime, the frequency behavior

of the effective dyadic susceptibility is determined by the fre-

quency behavior of the susceptibility of a single scatterer. For

branches, this is clearly evident from Equations (4-1-2-10) and

(4-1-2-11), where the only frequency-dependent parameter is the

susceptibility of the wood X. Further, since all three models

for wood permittivity satisfy the inequality [refer to Appendix

A]

X! << X! = 39 (4-1-2-13)

it is apparent from Equations (4-1-2-10) and (4-1-2-11) that for

branches

Xph : 7X~Pa 2 1 sin 20b + (4-1-2-14)

SX" _- VX pa21 (cos2O) sin2 e + 2sin 2( cos 2eb) + (4-1-2-15)

w1 b+ ib

These equations explain why the frequency behavior of X" and X"
t z

shown in Figure 4-3 so closely reflects the frequency behavior of

X" shown in Figure A-2 of Appendix A. Note that, in contradis-

tinction to resonant scattering, scatterer dimensions do not affect

the frequency behavior of X.

The effective scalar susceptibilities suggested by Tamir [refer

to Section 4.1.1] are also shown in Figure 4-3. These values appear

to be about one order of magnitude greater than the computed values

of X. This disparity may be attributed to the fairly low branch

number density assumed for the calculations (1 branch per cubic

meter) and also to the fact that Tamir's value includes, not only
is the effects of branches, but all other vegetative components as

well.
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4.1.3 Effective Dyadic Susceptibility of Leaves

Leaves are modelled as lossy-dielctric circular discs.

The salient scattering properties of individual discs can be

characterized in terms of their dyadic scattering amplitude f.

which is given in Section 3.3. The component susceptibilities A

for an unbounded forest of leaves can be found by employing

Equation (4-1-20).

According to Equation (3-3-30), the four components of the

dyadic scattering amplitude in the direction of forward scatter

are

f (i,i) I 7Xt(ko/2w) (e since + + e- since-) (4-1-3-1)
pq-I pg pg

where,

epg . p,qc{h,v) (4-1-3-2)

and all other parameters are defined in Section 3.3. The mean
scattering amplitude, averaged over leaf orientation and required

in Equation (4-1-20), is given by OWI

f (ii) -Jde d*p(elfp (i,i) (4-1-3-3). p q . .. .

0 0

where p(e,O) is the probability density function of the leaf

inclinations. Unfortunately, even under the assumption that

the leaves are diutributed uniformly in azimuth so that I
p(e,*) 1 ) (4-1-3-4) ,'

the expression

f (ji i) dep(e) dfp (i,) (4-1-3-5)
0 0

is difficult to evaluate analytically because of the complex de-

pendence of f (i,i) on the azimuthal angle *. Although it can
pq

be shown on the basis of symmetry that the cross-polarized com-

ponents must average to zero so that
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fh(ii) f f(1,) 0 (4-1-3-6)
hy - vh~ii

the co-polarized components have beer- obtained only by using nu-

merical integration.

Explicit expressions for the averaged co-polarized components

can be found, however, when the discs are electrically thin and

satisfy the inequality

koV t << 1 (4-1-3-7)

Then, according to Equation (3-3-38)

2Xi
f pp(i,i) - ( (pO-nO) (4-1-3-8)

Using Equations (3-0-2), (3-0-3) and (3-0-4) to recast Equation

(4-1-3-8) in terms of the angular variables , and substituting

the result into Equation (4-1-3-5) yields the following explicit

expressions for the co-polarized components

fhh(') ) - 2(+X) 1 (4-1-3-9)"

f.C (k a )2r~~ 1 (l~S 6ivv i) = 2 l[ - ( (llC°S'a + 212 sin2ei (4-1-3-10)

where,

I = dep(e)sin2 e (4-1-3-11)

12 = dep(e)cos 2e (4-1-3-12)

The effective dyadic susceptibility for an unbounded forest

of electrically thin leaves can be obtained by substituting

Equations (4-1-3-6), (4-1-3-9) and (4-1-3-10) into Equation (4-

, 1-20) and finding
bX

-Xhh = Xpa2t I (4-1-3-13)
2(1+1

Again it is seen that the equivalent continuous medium for an azimu-

thally-symmetric distribution of leaves is uniaxially anisotropic.
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V o

- w  .a.t. 1 - . .

=va 2.11+X. (I1 Cosu'i + 212sinPei) (4-1-3-14)

= -=0 (4-1-3-15)Xv Xvh

subject to the condition k. C- t << 1. Typically, leaves are no d€£=40

more than about I millimeter thick; according to Appendix A, c =40.

As a consequence, Equations (4-1-3-13), (4-1-3-14) and (4-1-3-15)

should prove valid over the entire frequency band 200 - 2000 HMz.

The effective dyadic susceptibility of leaves in the thin-

disc approximation [Equations (4-1-3-13) and (4-1-3-14)] is exem-

plified in Figure 4-4 for the case of a radiowave propagating :
parallel to the forest floor (i - 90 0). These calculations are

based upon a leaf radius of 5 centimeters, a leaf thickness of 1

millimeter, and a leaf number density of 200 leaves per cubic

meter, fairly typical values. The random orientation of the leaves

is described by a probability density function assumed to be uni-

form in azimuth, and uniform in elevation angle over the range

0-30 degrees (the leaves tend to be horizontal). Three models are
. employed to describe the permittivity of the leaves [refer to "

Appendix A], but only model III can be considered realistic. The

horizontal and vertical components of the effective dyadic sus-

ceptibility (denoted by Xh and X w, in general, but here for

ei - 90 0 by Xt and Xz, respectively) are shown in Figure 4-4.

The effective scalar susceptibilities suggested by Tamir

[refer to Section 4.1.1] are also shown in Figure 4-4. The agree-

ment between Tamir's values and those for X; based upon leaf

permittivity models II and III for frequencies below 500 MHz is

remarkable. At higher frequencies, relaxation losses attributable

to polarization of the water molecule [refer to Appendix I] are
likely to be appreciable, thereby invalidating both the Tamir

values and those computed on the basis of leaf permittivity model
II.

A comparison of Figures 4-3 and 4-4 reveals that for the

leaves xt > Xz whereas for the branches Xt < Xz . This difference
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is explainad by noting that, for the leaf and branch orientation

distributions assumed in the calculations, the leaves present

primarily a horizontal profile to a propagating 
radiowave (discs

with axes at 00 to 300 from vertical), whereas the branches

present primarily a vertical profile (rods at 450 that appear

vertical when in plane with viewer). Under these conditions, a

horizontally-polarized radiowave tends to be more susceptible to

the effects of the leaves, whereas a vertically-polarized radio-

wave tends to be more susceptible to the effects of the branches.

4.2 Plane-Wave Propagation

The mean electric field propagating within an unbounded

ensemble of three-dimensional scatterers can be determined, as

shown in Section 2.3, from the mean wave equation

-<J(x)> dsp(s)Jdx't(x-sx'-s)-<E(x')> -- jwjj.,J(x) (4-2-1)

where

L = VxVxI - k.I (4-2-2)

Consider the plane-wave

<E W) > E,] e "] s ''x  (4-2-3)-*

to be propagating in a source-free region where

J(x) = 0 (4-2-4)

Substitution of Equation (4-2-3) and (4-2-4) into Equation (4-2-1)

yields, upon taking the Fourier transformation with respect to the

variable x .

~(K X E) +k4I +. Jda p(s) dx' (Kc, X-s) e)5] E =0 (4-2-5)

Recognizing the second integral appearing in Equation (4-2-5) as %0

a convolution with respect to the parameter s and assuming
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the number density of the scatterers p(s) to be independent of

location so that

P(s) - p (4-2-6)

Equation (4-2-5) can be written as

K x c(KxE)+ k2 + (27)' P t(IK) E= 0 (4-2-7)

Because the fractional volume occupied by the scatterers is

assumed small [see Section 4.3], the second term in the square

* brackets of Equation (4-2-7) is also small and perturbation tech-
niques can be used to find an approximate solution for E. For

ordering purposes, it is then convenient to replace p in Equation
* (4-2-7) by 6p and expand both E and K as power series in 6 so that

E =E + + .... (4-2-8)

K = (I 0 + 6K1 + ....)i (4-2-9)

* Substituting Equations (4-2-8) and (4-2-9) into Equation (4-2-7)

and setting to zero the coefficient of each power of 6 yields

K2[ix (ixE)] + k = 0 (4-.2-10)

0' and

*- 2 0K[ix (ix%)]+ K2[ix (iXEl)]

+ k.E + (27r)3Pt( iK i) • = 0 (4-2-11)
-l -0- 0- -

Equation (4-2-10) can be recognized as the free-space wave equation;

as a consequence

0 " i =0 (4-2-12)

K0 = k. (4-2-13)

Equation (4-2-11) can be simplified by expanding the vector triple-

cross products and using Equations (4-2-12) and (4-2-13) to obtain

-2k.KI +k (El • i)i+ (2' pt(k~.,ki) E1 = 0 (4-2-14)
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This vector equation is equivalent to three linear algebraic

equations and, in order for a non-trivial solution to exist, the

determinant of the coefficients must be zero. The vector wave

numbers (propagation constants) CI satisfying this condition can

be determined by expressing E as

Eo = (Eoh-')h-h + (E0"v')v°  (4-2-15)

and substituting Equation (4-2-15) into Equation (4-2-14) to obtain

the following dispersion relation for K

-2k.K 1 + (27) P Zhh (2) pthy P

=0
(2w) s tvh -2k*K1 + (27)' pt

(4-2-16) C

under the assumption that (E1 • i)- 0. The dispersion relation

can also be written in the form

k2K - Bk, 1 + C 0 (4-2-17)

where

B 2wpI ["' + FrI] (4-2-18)

c(2 p)2[ T- _ -f T-_-] (4-2-19)

and Equation (2-3-23) has been employed to express t in terms of

the dyadic scattering amplitude f. As a consequence of Equation
(4-2-17), the allowable propagation constants are

+ B- B- 4C ]K = 2ko C(4-2-20)

1 2k,

K1  + Lhh +_2 4 v (4-21
V [ -2-21)

For classes of scatterers for which

0 (4-2-22) 1
4-20
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(such as branches and leaves having azimuthally uniform orienta-

tion distributions),

+ 27r' ",
K1 =Klh f hhi,i) (4-2-23)

- 2-,p
SR (ii) (4-2-24)1 lh - fvv--D

Thus, if Sp is now replaced by p (or, equivalently, 6 is set equal

to unity), Equations (4-2-9), (4-2-13), (4-2-23) and (4-2-24) can

be used to show that to first order in the perturbation parameter

Kp ko + 2p , pc{h,vJ (4-2-25)

WO0 pp

whenever Equation (4-2-22) is satisfied.

For three-dimensional wave propagation in two-dimensional

media [refer to Section 2.4], a similar development can be pur-

sued to show that, in general,

K t+kz , kZ = kocos i  , = Kt (4-2-26)

where

K -k + + -2-27)

kt= k.sini-

and
-,w w/4

= -- e /4(4-2-1 J)

if

fvh hv 0 (4-2-29)

(as in the case of tree trunks) then Equation (4-2-27) can be

sinplified to

Ktp "kt + f UriT pe(h,v) (4-2-30)
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4.2.2 Specific Attenuation

In general, the wave propagation constant K has both real -

and imaginary components so that

Kp - JK; pc{h,v} (4-2-31)

and, as a consequence,

-JK;(i'x) -K"(i'x)
<E(x)> = E e -- e - - (4-2-32) A

The real part of the propagation constant (K;) is expressed in j
radians per meter; the imaginary part (K;), also called the

specific attenuation, is expressed in nepers per meter or, alter-

natively, in decibels per meter through the relation .

a W (201og1 e)K" z 8.686 K;T  (4-2-33) CO

Because the fractional volume occupied by the vegetation is small,

the real part of the propagation constant (K;) is dominated by

the free-space component (k0); this Is shown in Figure 4-5. The

effect of the imaginary part (the specific attenuation K;), how-

ever, can be appreciable and is considered further in the following

sub-sections.

Some investigators [34, 35, 44, 45] have reported that the 4
measured specific attenuation decreases with increasing path
length. The theory developed in this report predicts no such

behavior for the mean field of a radiowave propagating directly

through an unbounded forest. Such behavior might conceivably

arise, however, as a consequence of lateral-wave propagation modes

along the air-forest interface [refer to Section 5], non-homogen-

eous transmission paths through non-uniformly forested regions,

and/or random (non-coherent) scattered field behavior [refer to

Section 7].

4.2.2.1 Specific Attenuation of Tree Trunks

The radiowave propagation model developed in this report

views the forest as a random ensemble of tree trunks, branches

and leaves having prescribed location and orientation statistics.

4-22
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Tree trunks are modelled as vertical lossy dielectric circular

cylinders of infinite length. The salient scattering properties

of individual cylinders can be characterized in terms of the dyadic

scattering amplitude f which was determined earlier in Section 3.1.

The specific attenuation for the mean field propagating through -n

unbounded forest of tree trunks can be found from the imaginary

part of Eqa.ion (4-2-30).

The pro, _ ion constants for the horizontally- and vertically-

polarized components of the mean field propagating through an un- j
bounded forest of parallel tree trunks can be obtained by substi-

tuting Equation (3-1-1) into Equation (4-2-30). Recognizing that

for a forward-scattered radiowave propagating parallel to the

forest floor, *(
o = _, ei  /2 , i s = - W ( -2-1- ) 'V

then C (p p )  (4-2-1-2)

n-n

and the equation for the propagation constants simplifies to

Kp =k - j ?P (CIPp) + 2 c ~pp) (4-2-1-3)ko n

where,

-Mn/Pn , (p=h) (4-2-1-4)

n -

- V, (p-v) (4-2-1-5)

and all other parameters are defined in Section 3.1.

The specific altenuation attributable to tree trunks as ex-

pressed by the imaginary part of Equation (4-2-1-3) is exemplified

in k'igure 4-6 for the case of a radiowave propagating parallel to

the forest floor (i=900). These calculations are based unon a
L"

tree trunk radius of 10 centimeters and a trunk number density of

1 trunk per square meter. Three models are employed to describe

4-24
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*. the permittivity of the wood [refer to Appendix A], but only model

III can be considered realistic.

It is apparent from Figure 4-6 that, in agreement with exper-

iment [33, 36, 39, 40], vertically polarized radiowaves are atten-

. uated more severely than are horizontally polarized radiowaves.

It is further apparent from Fignre 4-6 that for horizontal polar-

ization the specific attenuation is relatively insensitive to the

particular choice of the wood permittivity model. This is also
-. 1

true for vertical polarization above 70 Megahertz. This behavior,

as well as the oscillatory behavior evident at still higher fre-

quencies and shown in greater detail in Figure 4-7 for several .2

values of e., can be attributed to resonance effects. It is also
apparent that above 200 Megahertz resonance plays a major role in

tree trunk scatter models and essentially precludes the utilization

of simple dipole models at UHF for all but the smallest trees.

In the VHF band, when the radius of the tree trunk is small

relative to the radio wavelength within the trunk, Equation (4-2-

1-3) reduces to the dipole approximation

K =kell + plra 2x /(2+Xt)] (4-2-1-6)

for horizontal polarization, and to

K k,[I + pwa 2x /2J (4-2-1-7)
% ,.

for vertical polarization. These equations have been compared

with those derived by Brown and Curry [251. Unfortunately, a

direct comparison was not possible because Brown and Curry averaged

their results over a uniform distribution of tree-trunk inclination

angles and did not provide intermediate results. However, when

their technique was used to find the propagation constant appro-
priate to an array of parallel cylinders, the derived expressions

.. agreed exactly with Equations (4-2-1-6) and (4-2-1-7). This com-
parison provided an independent check of the CyberCom results.
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4.2.2.2 Specific Attenuation of Branches

Branches are modelled as lossy dielectric circular cylinders

of finite length. The salient scattering properties of individual
cylinders can be characterized in terms of the dyadic scattering

amplitude f which was determined earlier in Section 3.2. The spe-

cific attenuation of the mean field propagating through an unbounded

forest of branches can be found from the imaginary part of Equation

(4-2-25).

The propagation constants of the mean scattered field propa-

gating through an unbounded forest of branches can be obtained by

substituting Equations (4-1-2-7) and (4-1-2-8) into Equation ('-2-

25) and finding, for the horizontally-polarized component,

Kh = ko 1+ (p/2) (Ta2£lXL[ 2( £ sin eb+ +2j (4-2-2-1)

and, for the vertically-polarized component,

K= ko 1 + (p/2) Olra2 lX 212+) (cOs2 i sin 2 b

Te+ 2sin 2 i cosb) +2 (4-2-2-2)

MA
The specific attenuation attributable to branches as ex-

pressed by the imaginary part of Equations (4-2-2-1) and (4-2-2-2)

is exemplified in Figure 4-8 for the case of a radiowave propaga-

ting parallel to the forest floor (ei  90 0). These calculations

are based upon a branch radius of 1 centimeter, a branch length

of 1 meter, and a branch number density of 1 brarch per cubic
meter. All branches are assumed to be inclined 45 degrees with

respect to the vertical, but uniformly distributed in azimuth. .. -

Three models are employed to describe the permittivity of wood
[refer to Appendix A], but only model III can be considered real-
istic. Assumptions implicit in the development of the thin branch

scattering model preclude the consideration of branches of signi-
ficantly greater radius over the frequency band 200 - 2000 MHz.
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In the thin-branch frequency regime, the frequency behavior

of the specific attenuation is determined by the frequency be- -

havior of the susceptibility of a single scatterer. For branches,

this is clearly evident from Equation (4-2-2-1) and (4-2-2-2),

where the only frequency-dependent parameter is the susceptibility

of the wood X£. Further, since all three models for wood permit-

tivity satisfy the inequality [refer to Appendix A].

X << = 39 (4-2-2-3)

it is apparent from Equations (4-2-33), (4-2-2-1) and (4-2-2-2)

that for radiowaves propagating parallel to the forest floor

(ei = 9 00 )

xh Z (8.686)k.(p/4)(Ira t)X~sin28b (dB/m) (4-2-2-4) J

and -
and a (8.686)k.(p/4)(7ra 2 1)X coseb (dB/m) (4-2-2-5)

so long as eb is not too near 90 degrees.

The empirically-derived behavior predicted by Saxton and Lane
[refer to Figure 1-1] is also shown in Figare 4-8. Although the

model predictions agree reasonably well with experiment so far as .4
order of magnitude is concerned, only computations based upon wood

permittivity model I reflect a similar frequency dependence. How-

ever, because wood permittivity model I does not properly account
for ohmic losses within the wood, it must be considered nonrealis-

tic and the near agreement between the branch model employing it

and experiment only coincidental. This is not to say, however, ...
that the thin-branch model is invalid. It must be recognized that

the empirically-derived behavior predicted by Saxton and Lane re-

fers to attenuation through a forest (tree trunks, branches and S

leaves) and not solely to attenuation through branches. Thus, for

example, if tree trunks were the dominant scatterers, the sub-

resonant behavior contributed by the trunks [refer to Figure 4-6]
could easily mask the essentially frequency-independent behavior 0
predicted here for the branches using wood permittivity models II

and III. Further study is required.
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4.2.2.3 Specific Attenuation of Leaves

Leaves are modelled as lossy-dielectric circular discs. .4

The salient scattering properties of individual discs can be char-

acterized in terms of the dyadic scattering amplitude f which was

determined earlier in Section 3.3. The specific attenuation for

the mean field propagating through an unbounded forest of leaves

can be found from the imaginary part of Equation (4-2-25).

The propagation constt nts of the mean scattered field propa-

gating through an unbounded forest of electrically thin leaves can

be obtained by substituting Equations (4-1-3-9) and (4-1-3-10) into OP

Equation (4-2-25) and finding, for the horizontally-polarized com-
portent

Kp ko 1 + (p/2)- 2(+X) 1)1 (4-2-3-1)

and, for the vertically-polarized component

K ko I+ (p/2) (a 2 t)XV tI +X (IlcoS2ei +2 12 sin 26i (4-2-3-2)

where ,k (p/2) .

= dep£ (B)sin8 ; 12 dep2 181cos2 (4-2-3-3) ]
S0 0

and p,(O) is the probability density function of the leaf inclina-

tion angle. I
In the frequency band 200 - 2000 Megahertz, leaves may be con-

sidered, nearly always, to be electrically thin [refer to Section

4.1.3].

The specific attenuation attributable to leaves as expressed

by the imaginary part of Equations (4-2-3-1) and (4-2-3-2) is

exemplified in Figure 4-9 for the case of a radiowave propagating
parallel to the forest floor (8i -900 ). These calculations are

based upon a leaf radius of 5 centimeters, a leaf thickness of 1

* millimeter, and a leaf number density of 200 leaves per cubic

meter. The random orientation of the leaves is described by a pro-

bability density function assumed to be uniform in azimuth, and
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uniform in elevation over the range of 0 - 30 degrees (the leaves

tend to be horizontal). Three models are employed to describe the
permittivity of the leaves [refer to Appendix A], but only model

III can be considered realistic.

For electrically thin leaves, the frequency behavior of the

specific attenuation is determined solely by the frequency be- 9.
havior of a single scatterer. This is clearly evident from Equa-

tions (4-2-3-1) and (4-2-3-2) where the only frequency dependent
parameter is the susceptibility of the leaf X. Further, since all

three permittivity models satisfy the inequality [refer to Appendix

A]

Xj< X1 39 (4-2-3-4)

it is apparent from Equations (4-2-33), (4-2-3-1) and (4-2-3-2)

that for leaves

Oh z (8.686)kO(p/2}(wa2t}X!(l- 111) (4-2-3-5)

a (8.686)ko(0/2)(wa2t)X;(l 12) (4-2-3-6)

Especially noteworthy is the strong similarity between the fre-

quency behavior of the leaves [Figure 4-9] and that of the bran-

ches [Figure 4-10]. This similarity is a consequence of using
quasi-static boundary conditions for both the leaf and the branch
in developing expressions for their dyadic scattering amplitudes

[refer to Section 3].

The empirically-derived behavior predicted by Saxton and Lane
[refer to Figure 1-1] is also shown in Figure 4-9. Although the

model predictions agree reasonably well with experiment so far as

order of magnitude is concerned, only computations based upon leaf

permittivity model I reflect a similar frequency dependence. How-
ever, because leaf permittivity model I does not properly account .

for ohmic losses within the leaves, it must be considered nonreal-

istic and the near agreement between the electrically thin leaf

model employing it and experiment only coincidental. This is not
to say, however, that the dhin leaf model is invalid. It must be

recognizc- that the empirically-derived behavior refers to atten-
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uation through a forest (tree trunks, branches and leaves) and not

solely to attenuation through leaves. Thus, for example, if tree

trunks were the dominant scatterers, the sub-resonant behavior
contributed by the trunks [refer to Figure 4-6) could easily mask

the essentially frequency-independent behavior predicted here for

the leaves by using leaf permittivity models II and III. A similar

caveat was discussed in the case of branches.

4.3 Salient Forest Descriptive Parameters

Experimental verification of the electromagnetic forest model

requires the identification of measurable quantitative parameters

to describe the forest. Some of these parameters are microscopic

(e.g., the size and relative permittivity of individual tree trunks,
branches and leaves); other parameters are macroscopic (e.g., the

number of trees per acre and the number of leaves per unit volume
of forest). Several of these parameters (microscopic and macro-

scopic) have been identified earlier in this report and are dis-

cussed below.

For tree trunks, the specific attenuation (ai) experienced in

the low-frequency (Rayleigh) regime by a hozizontally or verti-
cally polarized radiowave propagating through an unbounded forest
can be determined from Equations (4-2-1-4) and (4-2-1-5). Using WV

these equations, CyberCom has been able to derive the following

explicit relations between the specific attenuation and select

salient parameters of the trunks

ch - (1.13)a2PfX'/IX /m) (4-3-1)

av - (0.286)a PfX; (dB/m) (4-3-2)

where a is the trunk radius (meters), p is the trunk number den-

sity (trees per square meter), f is the frequency (Megahertz, and
X is the susceptibility of the wood. Note that the specific
attenuation is directly proportional to the area occupied by the

trunks and to the frequency. Analogous expressions for specific

attenuation have not yet been determined (outside the Rayleigh

regimeat higher frequencies).
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For branches, CyberCom has been able to derive from Equations

(4-2-2-4) and (4-2-2-5) the following explicit relations between -

-*0 the specific attenuation due to electrically-thin branches and

select salient parameters:

h - (0.143)a21pfX* sin2 eb (dB/m) (4-3-3)
*

- (0.286)a21pfX! cos2eb (dB/m) (4-3-4)

where a is the branch radius (meters), I is the branch length

* (meters), p is the branch number density (branches per cubic meter),

f is the frequency (Megahertz), X. is the susceptibility of the

wood, and eb is the angle that the branch makes with the vertical. I
It is apparent from these equations that the specific attenuation

depends upon the square of the branch radius, but only linearly

upon branch length, number density, and XZ.

For leaves, CyberCom has been able to derive from Equations

(4-2-3-5) and (4-2-3-6) the following explicit relations between

the specific attenuation due to electrically thin leaves and

select salient foliage parameters:

Oh = (0.286)a~tpfX (l - 1 51) (dB/m) (4-3-5)

OL (0.286)a~tfX (l - 12) (dB/m) (4-3-6)

where a is the leaf radius (meters), t is the leaf thickness

* (meters), p is the leaf number density (leaves per cubic meter),

f is the frequency (Megahertz), and X is the susceptibility of

the leaves. The parameters I1 and 12 are related to the proba-

bility density function of the leaf inclination angles and are

defined in Equation (4-2-3-3). It is apparent from these equations

that the specific attenuation depends upon the square of the leaf

radius, but only linearly upon the leaf thickness, number density,

and X".
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It may be noted that each of the above expressions is of

the form

= kVPfG (4-3-7)

where

k = constant 9

V - volume of element

P - density (no./m s) 2
f = frequency in MHz

G = geometrical factor

VP = fractional volume

As it is required in several developments in this report that

fractional volume be small, a preliminary evaluation of this quan-

tity has been made using Reference 15. This lists for forests in

many parts of the world the following:

A = basal area in m /hectare (104m2 )

1 dry mass of stem wood

4b - dry mass of branches

Mf = dry mass of foliage

A cursory average of values for the United States gives the

following fractional volumes:
U..,

Trunks A x 10 .0064

Branches .0064 x Mb/MW - .0013

Leaves .0064 x Mf/1w = .00016

These values are clearly very small.
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5.0 Anisotropic Forest Slab Model

Results were obtained above for an unbounded continuous medium

equivalent to an infinitely high forest of model trunks, branches or

leaves. In this section the medium is bounded at a forest-air up-

per interface to provide a more realistic overall model. This

* necessitates starting again from Maxwell's equations, inserting

the dyadic permittivities from Section 3. The resulting inhomo-

geneous wave equation for an anisotropic medium is converted to a

homogeneous equation for an isotropic medium by the substitution

- zW (5-0--)

The vector potentials are found by an asymptotic evaluation

using integrations in the complex plane. The reflected component

is found to include a lateral (tree-top) component. These, plus

the direct wave are the potentials used to find the corresponding

vertical components of the E field received by a vertical dipole.

5.1 Model Formulation

The basic slab model for the forest is shown in Figure 5-1. "

The trees and vegetation are assumed to be distributed uniformly

between a smooth forest floor and the air interface at height h.

Earlier efforts [93, 104, 107] have shown that the presence of the

ground complicates the model significantly. The complications can

be avoided, however, by allowing the ground plane to recede to

z .-o so that the model reduces to the half-space representation

shown in Figure 5-2. This simplification provides a very good

approximation to the basic slab model if neithgr the transmitting

or receiving antenna is located too close to the ground [107].

Consider a transmitting antenna which is representable as a

vertical electric (Hertzian) dipole having a time-harmonic current

moment Idl * exp{jwt} and immersed a distance d below the inter-

face of two semi-infinite media [refer to Figure 5-2]. The iso-

tropic upper half-space (z > 0) represents the air and is charac-
terized by the permittivity c., and permeability u.o of free-

space. The electrically anisotropic lower half-space (z <0)
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represents the forest and is characterized (at least so far as the

mean fields are concerned) by the effective dyadic permittivity

Ec. and the free-space permeability V.. The relation between the

relative effective dyadic permittivity E and the biophysical para-

metere of the forest has been described in Section 4 of this report.

5.2 Mean Fields

In any charge-free medium where the electromagnetic fields

vary harmonically as exp{jwt), 4axwell's equations may be written

in the form

V x E -jwB V • D o
(5-2-1) .

V x H jwD+ V -B

If the medium is electrically anisotropic and characterizcd by the

relative permittivity dyadic c, the constitutive relations

' D = coL - E B =o'I(5-2-2)N may be introduced and Maxwell's equations re-written as

V x E =-jwoH V -E 0 ,
6- (5-2-3).'

Because the forest may be considered uniaxially-anisotropic with

respect to the mean fields [refer to Section 4],

=CtEx 4 EtZy ° + £z!.Z°_ (5-2-4)

can be used to represent the effective relative complex permi-

tivity of the forest, and E, H the mean fields.

Because for any vector A, A

V • (V xA) -0 , (5-2-5)

the relation

q V H 0 (5-2-6)

5-2 j.
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suggests that there is a vector A satisfying the relation

H - wJC.Ct(V xA) (5-2-7)

If this expression is introduced into Maxwell's equations, it

may be shown that A satisfies the equation

v2A + kD2 • A + c V (V • A) - (-jwc.c)- (5-2-8)

and that the mean electric and magnetic fields may be derived from

A using the .relations

E = k2ctA + V(V -A) (5-2-9) "1
H = jwcct(V xA) (5-2-10)

For an electrically isotropic medium where

E = C (5-2-11)
t

Equation (5-2-8) reduces to the inhomogeneous vector wave

equation

V2A + k cA = (-jwc. )-A (5-2-12)

and A is known as the electric Hertz potential (111].

In Region I (above the forest) where there are no electro-

magnetic sources

-- (5-2-13)

the vector potential (AI) satisfies the homogeneous vector wave
equation

V 2AI + k!AI - 0 (5-2-14)

In Region II (within the forest) where a vertical electric

(Hertzian) dipole of current moment Idl is immersed a distance

d below the top of the forest canopy, the vector potential (AI1)

satisfies the inhomogeneous vector equation

* The scalar coefficient jwEoct has been included for mathematical conavenience.
+ The harmonic factor exp{jwt} has been assumed and suppressed.
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V2AII + k2,'AII +ct -t!) 'V(V• AI)

' (-jWCoCt) Id1 S(x)6(y)6(z +d)z (5-2-15)

Because the current moment Idl is directed along the z-axis,

a solution AI will be sought having only a z-directed component, 6
i.e.

A1 l - (0,0,AI X) (5-2-16)

Equation (5-2-16) permits Equation (5-2-15) to be reduced to the

inhomogeneous scalar wave equation

a2AII l 2AP I I

z  z + k2czA1 1

aX2  a 2  I aZ2I .

(-jC -I Idl6(x)6(y)6(z+d) (5-2-17)

By introducing the anisotropy factor

K,_ a - (Et/C2 ) (5-2-18)

and the change of variable

z'- az (5-2-19)

Equation (5-2-17) can be re-written as

V,2Az + ko2 zA z (-jW. t)-Idl'6(x)6(y)6(z' +d') (5-2-20) ,

where V' represents the del operator transformed accordinn to
Equation (5-2-19). Note that as a consequence of the change of
variable, the inhomogeneous scalar wave equation for the aniso- S
tropic medium [Equation (5-2-17)] has been transformed into the
homogeneous scalar wave equation for an equivalent isotropic me-

dium [111]. The possibility of such a transformation for unbounded
anisotropic media apparently was first suggested by Clemmow [121]. 0

The solution to Equation (5-2-20) consists of two parts: the
complementary solution (Az' ) to t-e homogeneous scalar wave
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equation, and the particular solution (A:Ip) to the inhomogeneous
scalar wave equation. The particular solution can be obtained by
first introducing the three-dimensional Fourier transform pair

Az (-) = JAz(r)exp{Ji-"r)dr (5-2-21)

A (r) = (2 i) (Az(_)exp{-jS - rdO (5-2-22)

and subsequently using Jordan's Lemma to reduce the particular

solution to the two-dimensional integral

II II -Idl f exp{-j(Bt.t + rt1z+d I) d
A (r)A (, ,z) - -dt (5-2-23)

81r WCOE Z T 2

where

a(k,2e~ T; 8j' -iTI (5-2-24)

The condition that Tr <0 is necessary to ensure the convergence
of the inteqral as Iz+dl =.

Recognizing that the particular solution [Equation (5-2-23)]

is a two-dimensional integral, complementary solutions to Equations
(5-2-14) and (5-2-20) will be sought utilizing the two-dimensional
Fourier transform pair

A Z(Bt'z) =Az(pz)exp{j-t "p)dp (5-2-25)

-2) -
( p ,z )  (2 ) z ( t , ,-T ; e x p {- j t . k§d.t (5-2-26)

with appropriate consideration given to %he transformation of
Equation (5-2-19). Substitution of Equation (5-2-26) into Equations
(5-2-14) and (5-2-20) yields the complementary solutions

I~clI(t,z) C, "'(t)exp{ji 1 2z) +CIl(,E)exp{-jT1 , 2 z) (5-2-27)

where,

(k! t (5-2-28)
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kz - iI)TI (5-2-29)

To ensure that the electromagnetic fields remain finite as Izl ,
it is necessary that

C(t) 0 (5-2-30)
41

. (8 t) E 0 (5-2-31)

Following a normalization of the coefficients C+() and
C I ( +
c(Bt) and the addition of the complementary and particular so-
lutions associated with the wave equation for Region 11, the po-

tential functions for Region I and II may be written, respectively,Iin the following forms:
I -Idl f .(-32

AzI (PIZ) SId2  JM(At)exp{-jTiz)exp{-jit •}d'Et (5-2-32)

- AZ (P'z) 8 % -[(1 /lexp{-jT z+d} +NBt)exp{jT 2 z}]

exp-JIt a~d~t (5-2-33)

Because the tangential components of the electromagnetic

fields must be continiuous across the air-forest interface,

Equations (5-2-9), (5-2-10) and (5-2-16) require
A ( ,0) II(Pro) (5-2-34)

* .... I
8A ((,o)5/z 8[A5(,0)]/5z -2-35)

1 ,

Substitution of Equations (5-2-32) and (5-2-33) into Equations
(5-2-34) and (5-2-35) reveals that

M(Bt ) - [2ct/(- +E T1 )]exp{-jTd} (5-2-36)

N(Ot) - [( - t 1 /l +( t )lexp{-j 2 d} (5-2-37)

Mt -..-
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so that the potential functions for Region I and Region II are,

respectively,

AZ(p,Z) Id_ exp{-jT 2dlexp{-JrIz-
87r2WC.Ez (T + CtT)8 €o z  1 2 + €t  I2

exp{-J t 0pd (5-2-38)

II -Idl rFe -JTz+dI ( -
j

tT) jr 2 (z-d) 1  
j

*0 A z (P,z) = 2 J[8W WCoCz Tz T + C ct T=

exp{-jigt • pIdft_  (5-2-39) ]
Equations (5-2-38) and (5-2-39), in conjunction with Equations

(5-2-9) and (5-2-10), constitute the formal solution for the

mean electromagnetic fields of a vertical electric (Hertzian)

* dipole immersed in an anisotropic forest half-space. 2
5.3 Asymptotic Evaluation

The integral representations for the potential functions
" afforded by Equations (5-2-3i) and (5-2-39) are not amenable to

exact analytic evaluation. Fortunately, analytic asymptotic

approximations can be derived which will prove adequate for most

engineering applications. However, before proceeding with the

development of these asymptotic approximations, it will prove

expedient to introduce the transformations

= cos P P pcos-

(5-3-1)

By = sin d) p psin.
y y

so that with the help of the identity

JOolp) = exp{-jp cos 1- )}dip (5-3-2)

7r
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the potential function within the forest can be written as

A" +d r ,, T2 ),

z 0

S _ _d (5-3-3)

T 2 2

where

r(T, 2) M (5-3-4)
Ta + C tTl

may be recognized as the Fresnel reflection coefficient associated

with the air-forest interface and, as before,

T T1' - I = (k= - ()% (5-3-5)

2 2 ;
22 T; jjT a(k.% A' (5-3-6) .

If the identity [111, Equation 05.35a)1

exp{-Jk A " - e-JKIZ+dlO _ = j f 0 - o. lX)XdX (5-3-7)
R K VP0

where j*
K (k.c - AZ)' (5-3-8)

R = [p2 + (z-d)2] (5-3-9)

is analytically continued into the complex z-plane using the

transformation of Equation (5-2-19), the potential function in
the forest can be more conveniently written in the form

A" A ld) +Ar) (5-3-10)

where
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_(d). -_ _ exp{-Jk*/r } R
A3 MW -JIdi d)(--i

* 4wwc.E s  aRd a

Rd 2 + hl z + d l
, (5-3-12)

* is the component of the potential function associated with the -"

direct wave, and

iT, (z-d)
A .... __ . J (){ p)AdX (5-3-13)

is the component of the potential fwiction associated with the

reflected wave. j
The asymptotic evaluation of A. ()is most readily achieved by

first analytically continuing the real integration variable A into
the complex plAne. Unfortunately, the integral presented by Equa-
tion (5-3-13) presents a mathematical problem: the path of inte-

* gration begins at the origin. This can be eliminated by expressing
the Bessel function J,(Ap) in terms of the Hankel functions of the
first and second kinds [H(') (Xp) and H.(2)(Ap)], and then using
analytic continuation to express the Hankel fmiction of the first

0kind in terms of one of the second kind [1111 so that the electro-
magnetic waves exhibit the proper asymptotic behavior at infinity
as might be expected with the harmonic time dependence exp{jwt}.
As a consequence of these mathematical manipulations, the poten-
tial associated with the reflected wave can be recast into the
form

A(r) -Idl 0 jT2 (z-d) H1  ( )..A r c , ) e - XdX (5-3-14) '.'
lbz 47"e- C -z  2 .2

It is especially important to note that without the con-
straints imposed by Equations (5-3-5) and (5-3-6) on the imaginary
parts of Ti and T32 the integrand of Equation (5-3-14) would not
be uniquely determined. Generally speaking, the integrand is four-
valued (corresponding to the four possible combinations of signs

5-11 'ALI
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in the square roots defining Tr and T), and its Riemann surface

consists of four sheets. To insure the convergence of the integral

at infinity and the uniqueness of the integral everywhee, the in-

tegration path in the complex A-plane must be constrained to the

permissible (upper) sheet defined by Equations (5-3-5) and (5-3-6).
This can be achieved by joining the branch points (i.e., those

points where T, and T2 are zero) by two (essentially arbitrary)

branch cuts and insuring that the branch cuts are not intersected

by the path of integration.

An asymptotic approximation for the potential function in the O
forest suitable at relatively large distances from the transmitter

(k. >> ) can be obtained by evaluating Equation (5-3-14) using the

method of steepest descent [111]. This approach involves the con-
formal re-mapping of the integrand from the X-plane to the w-plane

using the transformation

.... ! " ), - k. V-c- sin w15 3 5)_

to eliminate the brimch cut associated with T the subsequent

deformation of the :Lntegration contour to coincide with the path
of steepest descent passing through the saddle point associated

with the exponential factor; and, finally, the approximate evalua-
tion of the integri:l defining A (rl.

The complex w-plane associated with the transformation of
Equation (5-3-15) is shown in Figure 5-3. Under this transfor-
mation, the coordinate axes of the X-plane are mapped into lines
in the A-plane defined by*

tanh w" (Xz/2)tan w' , (W'-axis) (5-3-16) -Z
and

tanh w" z -12/*X) tan w' ()"-axis) (5-3-17)

The branch points associated with , are located at

9 wB O (2n+1)r/2 ± ,'X , (n-l,2,...) (5-3-18)

•Predicated upon the condition that X I - ixI << 1

5-12
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If the associated branch cuts are defined so that

Im{T1 } - Im{k.(l - E zswn- 0 (5-3-19)

then from the branch point to the origin, the branch cut is

defined by*
tanh w" = (X/2)tan w', (w'w">0) (5-3-20)

z

and from the origin to infinity by*

tanh w" = -(2/Xz)tan w' , (w'w" < 0) (5-3-21)

Note that the branch cut proceeds from the branch point along the

X'-axis to the origin, experiences a clockwise angular rotation of

r/2 radians, and then proceeds from the origin along the )-axis to

infinity.

Poles, associated with the denominator of the reflection

coefficient r (T1 ,T2 ), occur wherever

cosw + IF a(l- csin2 w) = 0 (5-3-22)

These poles can be found on the top sheet where*

L +(w/4 + jX"/4) (5-3-23)

and on the bottom sheet where*

W +(3w/4 + jX"/4) (5-3-24)

i", Anticipating an asymptotic evaluation, the Hankel function
in Equation (5-3-14) can be replaced by its approximation for

large arguments ]
-j (A p-r/4) (5-3-25)

Introducing the transformation defined by the mapping of

Equation (5-3-15) and the geometric transformation suggested by

* Predicated upon the condition that XI.-]X, - _X"1j<I.
5 z-1
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Equation (5-2-19), viz.

* p =Rr sin r

(5-3-26)
-a(z-d) - Rr c o s r

recasts the potential function into the form

(k±
(r) - -Idl ej 7/4 (ko )(

47r0 z  a(2wRr sin er)

exp{-jko/ c_ R cos(w- er)}dw (5-3-27)

When

Qkol v'z rl >> 1 (5-3-28)

Equation (5-3-27) can be evaluated asymptotically by defining the
integration path P (which, in the X-plane, coincides with the

A'-axis) into the steepest-descent path SDP (which, in the w-plane,

passes through the saddle point w = Or) defined by

Re I (z Rr cos (w- Or)) = Re{ {/Ez Rr1 (5-3-29)

• Integration of A (r) along the steepest-descent path yields

exp{-jk*/c Rr}
A(r) r~ I i( r  (5-3-30)z 4ir • c r aRr

where

cos~r - /cI(l-czsin26r)
r(er) = (5-3-31)coser + VrC-t a - Cz$in er)

is the Fresnel reflection coefficient associated with the wave

specularly reflected from the air-forest interface.

The validity of Equation (5-3-30) is predicated not only

upon the condition that

5-15



kolI/ R >> 1, (5-3-32)
z r

but also upon the condition that the value of the reflection coef-

ficient F(w) appearing in Equation (5-3-27) does not vary appre-

ciably along the steepest descent path in the vicinity of the sad-

dle point, i.e.

r'(w*) Z 0 (5-3-33)

This assumption will prove justified if [87]

koIRr(er-ec)2 I>1 (5-3-34)

where

8 = Arc sin (1//vfc) (5-3-35)
c z

For the forest, the effective permittivity c is close to unity.

Further, because the distance p between the transmitter and re-

ceiver will, nearly always, be much greater than their height

differential Iz-dl, the angle

r = Arc tan [p/ajz-dIj (5-3-36)

will, nearly always, be close to w/2. As a consequence, the re-

quirement expressed by Inequality (5-3-34) is usually much more

stringent than that expressed by Inequality (5-3-32).

Because e will, nearly always, be -lose to 7/2, the defor-r
mation of the contour P into the steepest-descent path SDP nearly

always results in the capture of the branch point wB. In order

to avoid crossing the branch cut when the branch point is cap-

tured, an additional line integral about the branch cut must be

introduced [refer to Figure 5-31. Integration about the branch

, cut yields the asymptotic result that [87]

(exp{-jk* [p+a(cz-l)hlz-dllIMc) Idl . 1 . z j°! , (5-3-37)
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subject to the constraint that

• k (r[ 0 p1) - a Iz-dJ (cs-1L)k !>1 53-8
* k >> (5-3-38)

(k.c alz---1j 1

If

P >> lal Iz-dl/(- 1) (5-3-39)

then

A) Idl. 1 exp(-jk[P +a(c(l53z-dl0)Aw€ o(z1 (5-3-40)"

2 ME . k.(E2 -l) P

Actually, the validity of Equation (5-3-37) is predicated, not

only upon Inequality (5-3-38), but also upon the condition that

the reflection coefficient r(w) appearing in Equation (5-3-27)

does not vary appreciably along the steepest-descent path in the

vicinity of the branch point, i.e.

r, lw. ) z o (5-3-41)
This assumption is justified if

(koIRr IzslI) >> 1 (5-3-42)

Observing that when a- 1, the phase factor appearing in the

exponents of Equations (5-3-37) and (5-3-40) can be written in
the form

k [P + (cEzl) z-dJ ]- k, /z (d/cose C )

+ ko[p -d(hinOc/cosec) - Izl (sinec/cosec)]

+ koEz (zl/cose) (5-3-43)

where

ec - Arc sin (l1/c_) (5-3-44)

ec rcs
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The three terms of Equation (5-3-43) suggest that the vector po-

tential A.t) can be associated with a so-called "lateral" wave

which propagates from the transmitter up through the forest at the

critical angle Oc to the air-forest interface, through the air

. along the air-forest interface, and down through the forest at the

critical angle from the air-forest interface to the receiver.
.

As a consequence of this aaymptotic evaluation, a radiowave
propagating within the forest may be considered to consist of

three components - the direct -iave, the reflected wave, and the

lateral wave - and the vector potential within the forest can be

written in the form
11 M (r) (1)

Az- A d  + Ar + A) (5-3-45)

where A (d) is the vector potential associated with the direct ,
3

wave (Equation (5-3-11)], AZr) is the vector potential associated

with the reflected wave [Equation (5-3-30)], and Az() is the
Z

vector potential associated with the lateral wave [Equation (5-3-

37)].

5.4 Elbctromagnetic Fields

The electromagnetic fields (E and H) within the forest can

be derived from the vector potential A [Equation (5-3-45)] by

using Equations (5-2-9) and (5-2-10). Because the electromagne-

tic fields are related linearly to the vector potential, just as
the vector potential exhibits three asymptotic components (the

direct, reflected, and lateral waves), so too will the electro-

magnetic fields. For example, the vertically-polarized components
of the electric field vector E, derived under the asymptotic

approximation from Equation (5-2-9) upon substitution of Equations

(5-3-11), (5-3-30) and (5-3-37), are
I exp{-jk /F "d }

E (d)= a- (fwt Idl sin d
2 e (5-4-1).\4/ dd
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exp{-Jk z Rr)E /--r Idl *in'err(er) (5-4-2)z\4w IR r

* E~txm6OJdl ( + a(s3-l)%Iz-dI)
6a- (5-4-3)

where,

* Rd [pa + a2(z+d)2 Is (5-4-4)

Rr  [P + a2(z-d)2I (5-4-5)

Goe 0 Arc tanr 1 545
a (z+d) J

er - Arc tan (5-4-7)* a 1-elj

r(er) - (5-4-8
coser + %(":t/(l-Czxin'er)"

.. 1a /;F (5-4-9). ;

Note that in th limiting case of an isotropic forest, the aniso-
tropy factor a *l, and the above results reduce to those obtained
by Staiman and Tamir [114, Equation (28) with a--v/21. In this
limiting isotropic case, the parameters Rd, R e and Or acquire
the geometric interpretation shown in Figure 5-2.

The remaining component of the electromagnetic field, the
magnetic field intensity, can be obtained similarly. In this re-
port, however, attention will be focused upon the vertical electric
field E3, the only component received by a vertical whip antenna.
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6.0 Forest Pulse Response

The anisotropic half-space model of the forest developed in -

Section 5 of this report is a time-harmonic model. The trans-

mitting antenna was assumed to be a vertical electric (Hertzian)
dipole having a time-harmonic current moment IdL-exp{jwt). How-
ever, because the effective dyadic permittivity characterizing the
equivalent continuous medium of the mean wave is linear, the model
can be extended using liaiear system theory to accommodate the
transmission of arbitrarily-modulated waveforms. This extension
is especially importa&-t if the model is to be employed in analysis
and evaluation of wideband spread-spectrum radio communication

systems.

Following a brief review of linear system theory in Section

6.1, the forest transfer function F(f,t) is identified in Section

6.2 and employed in Section 6.3 to define the forest pulse re-
sponse. In Section 6.4, the forest pulse response is evaluated

for the important practical case of a broadband, rectangular,

r-f pulse.

6.1 Linear System Theory

A system is a collection of interrelated components or objects
for which there is specified a set of dynamic variables called
excitations, or inputs, and another set called responses, or out-
puts [145]. The radio transmission channel through the forest
represents such a system. The tree leaves, branches, and trunks
constitute tl.e collection of components or objects which are inter-
related by mutually-induced currents excited within them by electro-

magnetic fields. The dynamic variable representing the input of
this system can be the time-harmonic electric current momemt Idl
of an electrically small (Hertzian) dipole transmitting antenna.
The dynamic variable representing the output of this system can
be the electric field E at the location of the receiving antenna.

The objective of systems analysis is to determine how such a
collection of components of objects behaves when subjected to an
arbitrary, but specified, excitation. For the analysis of linear
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systems (such as the forest transmission channel), which (by de-

finition) satisfy the principle of superposition so that

1 + 2 x 2 ]  1F[X 1] + a2F[x2 ] (6-1-1)

where Fix] rapresents the output response of the system to the

input excitation x, there are two basic approaches. The first

of these, which might be termed the "direct" approach, consists
in directly solving the input-output relation

y - F[x] (6-1-2)

subject to a known set of initial conditions or boundary condi-

tions. In the "indirect" approach, the input x is first resolved

into a set of elementary functions all of which are similar in

form. The response of the system to each elementary component

(presumably determined more easily than the response of the system

to an arbitrary input) is then obtained and the responses to all

the elementary components of the input added to obtain (by virtue

of system additivity) the output corresponding to the input.

Any one of a number of elementary components may be used for

the decomposition of the input. Two often-employed choices for

the elementary components are the Dirac de' -a function and the

complex exponential. Resolution of the input x into a continuum

of Dirac delta functions may be achieved with the help of the

sifting integral

x(t) f x(T)6(t-r)dT (6-1-3)
-mO

If the response to the linear system at time t to a Dirac 6-

function applied at time T[6(t-T)] is f(t,T), the superposition

principle [Equation (6-1-1)] and the sifting integral [Equation

(6-1-3) J dictate that the response of the linear system to the

arbitrary input x(t) is

y(t) x(f(t,T)dT (6-1-4)

The function f(tr) is termed the time-variant impulse response.

6-2
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Alternatively, the input x may be resolved into a continuum of

complex exponentials using the Fourier transform pair -

xlt) - X(f)exp{j21ft~df (6-1-5)

X(f) - Jx(t)exp{-j2wftldt (6-1-6)

The function X(f) is called the amplitude ,pectrum of the input

x(t). If the response of the linear system at time t to the com-

plex exponential of unit amplitude exp{j2%ft} is F(f,t), the supe'.-

position principle [Equation (6-1-1)] and the inverse Fourier trans-

form [Equation (6-1-5)] dictate that the response of the linear

system to the arbitsary input x(t) is (6-1n7

,y(t) - If) F(f,t) exp{ Jlwft~df(617

The function F(ft) is termed the time-variant transfer function.

6.2 Forest Transfer Function

The time-variant transfer function of a linear system repre-
sents the response of that linear system at time t to the complex

exponential of unit amplitude exp{j2wft). Inasmuch as the trans-

mitting antenna of the anisotropir half-space model of the forest

is taken to be a vertical electric (Hertzlan) dipole having a time-
harmonic current moment idlexp{jwt) [refer to Section 5.1], the

mean component of the vertically-polarized electric field found in

response to that current-moment [refer to Section 5.41, may be con-

sidered to be the forest transfer function F(frt) after normalizing

the expressions for the mean field by Idl. Further, as a consequence

of the relationship between the expressions for the mean field and

the forest transfer function, the forest transfer function F(f,t)

may be considered to consist of three components corresponding to

the direct wave [Fd (f,t)], the reflected wave (Fr (f,t)], and -.he

lateral wave [F lft)].

Inasmuch as a real input (excitation) to any linear system

is always observed to produce a real output (response), it may
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be shown as a consequence of Equations (6-1-6) and (6-1-7) that

the real part of F(f,t) must be an even function of frequency,
i.e.

F'(ft) - F'l(-f,t) (6-2-1)

and the imaginary part of F(f,t) must be an odd function of fre-

quency, i.e.

F"(ft) -F"(-ft) (6-2-2)

Further, inasmuch as d-c transmission through the forest is not

possible,

F(Ot) - 0 (6-2-3)

These relations have proved helpful in evaluating the field ex-
pressions of Section 5.4 at negative frequencies as required by GA
Equation (6-1-7).

It is apparent from Equation (6-1-7) that the forest transfer

function F(ft) should be defined over the entire frequency range
from minus infinity to plus infinity. In practice, however, the OWN

forest "transfer function need only be defined over the spectral

range occupied by the input signal X(f). This is fortunate be-

cause the forest transfer funftion (the normalized vertically-

polarized electric field) is expressed oa the basis of a high-

frequency asymptotic evaluation [refer to Section 5 3] which may

give incorrect rtsults below one Megahertz.

Because each of the three forest transfer-function components 7-

may be considered to be a coa.4lex phasor, the received signal will

be either enhanced or degraded depending upor their relative strength

and phase. Their relative strengths and phases are clearly fre-

quency-dependent [refer to Section 5.4) and, therefore, the forest

transfer function is frequency-selective.

As a consequence of the frequency-dependent factor (wpo/4w)

appearing in Equations (5-4-1) and (5-4-2), the effect of the

direct- and reflected-wave components of the forest transfer func-

tion on the transmitted signal will be primarily one of differen-

tiation. This is also true in free-space transmission as can be

6-4
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clearly seen by setting c -1 in Equation (5-4-1). Except for

its exponential factor (which is primarily one of phase delay),

the lateral-wave component of the forost transfer function is

nearly frequency independent. This means that if an equalizer

having a response inversely proportional to frequency (f-) is

employed at the receiver to ensure distortionless free-space trans-,

mission, direct- and reflected-wave pulses are received nearly

distortion free, whereas wide-band (40C Msz) lateral-wave pulses

could be severely distorted.

6.3 Forest Pulse Response

Consider the current moment of the electrically small (Hertz-
ian) dipole transmitting antenna to be the rectangular r-f pulse j

x(t) - p(t) - sin(2wfot) (6-3-1)

where f. is the r-f carrier frequency, and p(t) is the pulse

envelope defined here to be

* 1l Itl < L/2

p(t) " (6-3-2)

0 , Itl > L/2

where L is the pulse length (duration).

The amplitude spectrum of the pulse envelope and of the rec-

tangular r-f pulse can be determined from Equation (6-1-6) to be,

respectively,

P(f) - L sinc{wLf} (6-3-3)

and

X(f) - Jsinc{wL (f+f.)) - sinc{7rL(f - f.) (6-3-4)

The spectral bandwidth occupied by the central lobe about the

carrier frequency f. is 2/L.

The forest pulse response, if defined to be the vertically-

polarized component of the mean electric field arising in response

to a rectangular r-f input pulse of current moment, can be obtain-

ed from Equation (6-1-7) upon the substitution of Equation (6-3-4)

for the amplitude spectrum of the input X(f) and the use of
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Equations A5-4-1), (5-4-2) and (5-4-3) for the forest channel

transfer ±unctions.

6.4 Numerical Evaluation

The evaluation of Equation (6-1-7) is not easily effected
analytically due to the complex frequency dependence exhibited

by the effective dyadic permittivity of the forest &. As a con-

sequence, numerical techniques based upon the fast Fourier trans-
form (FFT) have been employed to expedite its evaluation. A re-
view of the Imporwant proporties of the M and special consider-
ations bearing upon its application to the numerical evaluation of
Equation (6-1-7) is presented in Appendix E.

To exemplify the numerical evaluation of the forest pulse

response, CyberCom has elected to consider (1) a transmitting- re
antenna current moment representable by a rectangular r-f pulse;
(2) a forest transfer function developed asymptotically on the

basis of an anisotropic half-space consisting entirely of elec-

trically-thin leaves; and a receiver with or without equaliza-

tion for distortionless pulse transmission in free space. The

channel model is illustrated in Figure 6-1.

The density of the leaves representing the forest has been

taken an 200 leaves per cubic meter with each leaf represented

as a dielectric disc 5 centimeters in radius and 1 millimeter

in thickness; the leaves have been assumed to be randomly posi-

tioned in azimuth and location, and inclined from the horizontal

with a probability density function uniform over the range 0 to

30 degrees. The transmitter has been positioned 4 meters (ht)

and the receiver 6 meters (hr) below the air-forest interface;

they have been separated by 1 kilometer (p) [refer to Figure 5-2].

The forest transfer functions corresponding to the direct-

wave and lateral-wave components have been determined for the

postulated forest parameters from Equations (5-4-1) and (5-4-3),
respectively, and are shown (magnitudes only) in Figure 6-2 for

both unequalized and free-space equalized receivers. The nearly

linear frequency response of the unequalized direct-wave component
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apparent below 600 Megahertz will, as noted previously, lead to

differentiation and distortion of a pulsa propagated through the

forest. The transfer function of the direct-wave component

equalized for distortionless free-space transmission is nearly
independent of frequency below 600 Megahertz. However, the

transfer function of the equalized lateral-wave component
appears now to behave as a low-pass filter. A comparison of

the unequalized and equalized forest transfer functions suggests

that, for distortionless transmission through arbitrary forests, ..
* adaptive equalization parametric upon path length, antenna heights,

frequency, and forest susceptibility may be required.

The rectangular r-f input pulse of current moment x(t) is

shown in Figure 6-3(a). This short pulse, only 5 nanoseconds

long, consists of 3-cycles of a 600-Megahertz r-f carrie- and

occupies a spectral bandwidth (central lobe) of 400 Megahertz. .o-

The unequalized r-f output pulse responses y(t) corresponding

to the principal components of the forest transfer function are

shown in Figure 6-3(b) to (e). These responses have been c,)m-

puted for the forest channel model of Figure 6-1 using a 256-

point (20-point) FFT having a time resolution of 0.20833...

nanoseconds and a frequency resolution of 53.33... Kilohertz.I The direct- and reflected- wave pulses are distorted more than
the lateral-wave pulse for reasons previously noted. For the

equalized case shown in Figure 6-4, the direct- and reflected-

wave pulses are distorted less than the lateral-wave pulse.

Distortion of the-lateral-wave pulse is primarily attributable

to the poor low-frequency response of the asymptotic model,
although some distortion is also attributable to the equalizer.'

Although the pulse distortion introduced by the forest appears

to be relatively small (at least for the forest parameters

employed here), multipath and intersymbol interference (ISI)

could be substantial for multipath transmissions.

At -the r-f carrier frequency of 600 Megahertz, the am-

plitude of the reflected-wave relative to that of the direct-

wave is 0.986 (0.12dB down) and its phase almost directly

opposite. Although the differential phase shift between
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direct- and reflected-waves attributable to path geometry

'720 ihr (degrees) (6-4-1)

is only about 35 degrees, the phase shift imparted upon reflection

from the air-forest interface is about 172 degrees, Thus, the rel-

ative amplitude of the direct-plus-reflected wave is only 0.107 or

about 19 dB below the direct. In the configuration considered,

"" which may not be realistic because the effects of tree trunks and

branches are not yet included, although the amplitude of the lateral-

wave relative to that of the direct-wave is only 0.22 (13 dB down),

it is approximately 6 dB above the direct-plus-reflected component
propagating within the forest. The differential time of arrival
(TOM between pulses arriv1ng via the dizect and lateral waves

is approximately

[pXz /2 - (ht+hr) 71T]300 5.9 nanoseconds (6-4-2)
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7.0 Non-Coherent Forest Scattering

In the preceding three sections propagation through the for- -

est has been described neglecting fluctuations about the mean field. :
This section will show that these become important as the frequency

and propagation distance increase. In this section, the effect of

the fluctuations will be taken into account for one specialized
forest configuration. The results will give an indication of the

importance of the fluctuating field in the forest environment.

In order to keep the analysis tractable, the scalar case of

propagation through an infinite medium of vertical trunks will be .0,
considered. The trunks will be assumed to be identical vertical

circular cylinders of radius a and relative dielectric constant

V In addition, their diameter will be chosen small enough so Ki

is that the Rayleigh criterion is satisfied. Although the Rayleigh

assumption is somewhat restrictive, physically meaningful results

can still be attained over a portion if the frequency range of

interest. The field is excited by an electric line source of unit ..I
* magnitude which is parallel to the trunks. As has been pointed

out in Section 2.2.1, the assumed source and scatterers give rise

to an electric field vector wholly in the z direction. The pro-

blem can be exactly scalarized in terms of this component.

• The strength of the random component will be examined by

determining the intensity of the field

I~xt) = <(Kt) * (Et)> (7-1)

and relating it to the intensity of the mean component

O(x t)  <T <(2 t)><T*(E t )>  (7-2)"-

For two-dimensional Rayleigh scatterers, the intensity satisfies

Equation (2-2-50) with The equation is

It I (G ( t) 1 2- dstjG(Et - t) J(st)  (7-3)

where 8kl% ja 2p with a being the polarizability constant appearing

in Equation (2-2-21). For a circular cylinder, the polarizability
is a=-X wa2 with X£ W -1. In obtaining Equation (7-3) from
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Equation (2-2-50) it has been assumed that the trunk medium is

unbounded (s -- ) and the density p is constant. These homogeneity

assumptions lead to a translationally invariant Green's function:

G(xt,xj) - G(xt -x) (7-4)

The mean Green's function satisfies Equation (2-2-47). In

p the Rayleigh regime this equation reduces to -,

[v +ko(1 + Pa)G(xt) = ( (7-5)

The solution is given in terms of the zeroth order Hankel function

of second kind. It is

G(xt) H0  (K) (7-6) I
and

ic k.k*/rPot (7-7)

Before proceeding it should be pointed out that the intensity

Equation (7-3) was derived under the assumption of small fractional J

area (two-dimensional analog of small fractional volume used for

three-dimensional problems). Analytically, this condition states

that a2 p<<l. For a forest having a - 10cm and p - .1/m, the con-

p dition is met, since wa2p - 0.003 << 1. Since pa - X,(a 2p) and

I Xl=40, one can also conclude pa<<l.
The exact solution to Equation (7-3) can be obtained by con-

volution techniques; however, the inverse transform involves a

double integral. To simplify the form of the solution, the Green's %
function in Equation (7-3) is replaced by its far-field approxima-

tion. One obtains

G - J (KXt -r/4) (7-8)G(x~t 2 ft -e 

where Irxtl>>l. Further simplification is obtained by using the

fact that

K ko ( + p a/2) (7-9)
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in the asymptotic expression for G. This result is:

-J(kox t - k.p a/2- w/4)G (xt!=se -d (7-10)
- 2 t) 2/2wk xt

Now using Equation (7-10) in Equation (7-3), the approximate
intensity equation is

I(xt) - K(xt) - djj( t - S t ) l ( S t )  (7-11)

where

K(xt) = • -(7-12)

8 wk* x.

The solution to this equation can be obtained in terms of the

single quadrature since now the Fourier transform of K(xt) can
be explicitly evaluated.

Before solving Equation (7-11), the physical restrictions
imposed on the solution when the asymptotic form of the Green's

function is used are addressed. First, the term IG(x!t)1 2 appear-
ing on the right hand side of Equation (7-3) has been replaced j
by its asymptotic apprcximation. This requires that Kj!ej>>l or

that the receiving antenna be in the far field of the transmitter.
Second, the Green's function in the integrand of Equation (7-3)
has been replaced by its asymptotic expansion. This requires that
KIx-sI1>>l or that the scatterers be in the far field of the obser-

vation point. Thus scatterers that are in the near field of the --

observation point are not treated correctly. This inaccuracy is
small, however, if the far field distance is not too large. In
this case, there are many more scatterers in the far field of the
observation point than in the near field. or

Integral Equation (7-11) can be solved exactly using Fourier

transform theory. If the Fourier transform of I(x) is denoted by
I(k) where

I(xt) " dkti kt')te (7-13)

7-3
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then the transform of Equation (7-11) becomes:

It ) - K(kt) + OK(kt)I(kt) , 8 - (2,f) 28 (7-14)

where

K(!t)- K(kt) = (4w)2ke Vk2+ (k.aep) 2 (7-15)

with kt= Ikt1. Solving Equation (7-14) for I(kt) gives

I Q(t ) - (7-16)

1 - OK(kt)

Now using this result in Equation (7-13), the Intensity is

:':- fK(k t ) -Jk4 -xEt(xt) d kt -- e - (7-17)

S-- d - BK(kt)

Since I(k only depend.s on the absolute value of kt, the angular

depend-'ce in Equation (7-17) can be integrated explicitly. Let

0 be the angle between kt, and Et; then

.-!t = ktxtcose (7-18)

and dkt ktdktde. Equation (7-17) becomes

=fcodk 2 ktK (kt )  -Jkxco8 e
X(t I(xt)uJ dktJ de ------ t- e (7-19)I(Xt )K 0 0 1 - OK(kt)

= ~ kJ o (k x )

I(xt) 1 fdk -- t- (7-20)
""- 4k*,/k2  +

The expression for the intensity giv~n in Equation (7-20) is

a function of xt , k., a and B. This dependence on four parameters

can le reduced to two parameters by appropriate scaling and nor-

malization. For this purpose, the two-dimensional scattering

cross section aa and total cross section at are introduced. These

quantities are related to the transform of the two-dimensional

transition operator as follows (Appendix F)
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.

,Y- 2 de i(koki)2 (7-21)
* 0

(1r) 2 ":

t " ] 2 Im i(k.,o,ki) (7-22) ii
•t

For Rayleigh scatterers, t(ko, k~i) becomes

-- - - k (7-23)
(2w)2

Using this in the expressions for aa and at givesk.l c' I

a5 13 (7-24)
4

- - (7-25)

The albedo, W., and the optical distance, T, can be introduced

* using the cross sections just defined. They are:

W 0 T- POtXt (7-26)

The albedo is a ratio of the scattered power to the total power,
with the total power defined as the scattered power plus the power
absorbed by the particle (Appendix F). The albedo lies between 0

and 1. For W,,- 0 there is no scattering (all absorption) and for

we 1 there is no absorption (all scattering).

The optical distance is a measure of the attenuation of the
mean intensity, I,(xt). Thus, in the far field of the source

-pa x
e t t

I.(xt) - IG(xt)1 e (7-27)
8wk.xt

.4., ...
4

where Equations (7-10) and (7-25) have been used. From Equation
(7-27) it is seen that when T= P t xt - 1, the exponential has an

argument of -1. Now Equation (7-20) can be normalized. Let q =

kt/Pat and define a ncrmalized intensity
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T(xt) - I(xt)/I o (xt) (7-28)

The expression for the normalized intensity is then given by

"*Tf dq q J9 (qr)

(r) -e (7-29)
r0 I1 -we r

Thus the normalized intensity 1 is only a function of T and W o.

The expression of T(r) given in Equation (7-29) is exact but

slowly converging. As q becomes large, the integrand is propor-

tional to cos(qr)//q. This convergence makes numerical evaluation

difficult. Fortunately, by deforming the integral into the com-

plex plane, a more rapidly converging representation can be obtained

(see Appendix G). The result is I"p
2 r -r2 Ko (-r + )

I(T) - 2"rW.eK (r'7 V) + V dppR p2 + (7-30)

p0W

The integrand is now exponentially decaying for large p. As a

check, it is interesting to note if W*- 0, then -(r) =1. This

means that if there is no scattering, the mean intensity is exactly

equal to the total intensity.

The coherent and noncoherent intensitLes have been computed.

Some representative results of the computations are shown in Figure

7-1. Because of the need to satisfy the Rayleigh criterion,

ko/c a << 1, the small trunk radius of 0.01 meters was chosen.

Using this trunk radius and CyberCom permittivity modal III, the
Rayleigh number was computed to be 0.4 at 300 MHz. It is also

seen from Figure 7-1 that a density of 0.1/m 2 has been used. This

represents, on the average, one tree in every 10 square meter area.

It can be seen that the coherent intensities (related to the

powers by a constant) decrease almost linearly with distance as

expected in the assumed two-dimensional medium. The noncoherent

intensities, however, fall off much more slowly with distance,

thereby becoming an increasing fraction of the total intensity.

At 300 MHz, the noncoherent intensity becomes greater than the
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coherent intensity beyond about 230 meters. This behavior is simi-

lar to that in Figure 8 of Schwering et al [28a), which also uses

transport theory. If the total intensity is replotted on a linear "'

distance scale as in Schwering et al, it is seen to fall off at a

decreasing rate with distance.

In Figure 7-2 are plotted the normalized intensities (total/

coherent). An examination of the curves shows that the normalized

intensity increases with distance. At a frequency of 100 MHz or

200 M1z, the normalized intensity stays fairly close to unity for

distances as great as one kilometer. This means that the random m.

component of the intensity is relatively small for frequencies be- ",
low 200 MHz and distances as large as 1 kilometer. The curve for

300 MHz increases rapidly with distance, however, and reveals that

the random component will be important for distances in excess of

200 meters.

It appears that the random component of the intensity increases

with frequency and propagation distance. Although the computed val-

ues presented in Figure 7-1 are interesting, to compute the inten-

sity for a forest with larger trunks, the Rayleigh or low-frequency

approximation can not be employed. The correlation equation must

be used with the transition kernel for resonant trunks. This has

yet to be done.
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8.0 Conclusions

CyberCom has Ceveloped a stochastic radiowave propagation

model useful for assessing the effects of forests and other vege-

tation upon radio communication systems operating in the 200 -

2000 Megahertz frequency band. The model considers the forest to

be representable as a time-invariant ensemble of randomly posi-

tioned and oriented, discrete, canonical scatterers. Tree trunks

are modeled as infinitely-long, circular, lossy-dielectric cylin-
ders; branches as finitely-long, circular, lossy-dielectric cylin-

ders; and leaves as flat, circular, lossy-dielectric discs. Math-

ematical expressions characterizing the scattering properties of
these canonical scatterers in terms of their dyadic scattering

amplitudes have been developed and integrated into the multiple-

scattering theory of Foldy [53] to develop equotions describing

the behavior of a propagating radiowave. In the case of tree

trunks and leaves, the model is suitable even in the difficult re- I
sonant scattering region where the physical dimensions of the
scatterer are comparable to the radio wavelength within. However,

in the case of branches, additional study would be required to

extend the model into the resonant regime.

The propagating radiowave may be considered to consist of two

• components - a mean (or coherent) component and a random (or non-

coherent) component. CyberCom has shown that, so far as the mean

radiowave component is concerned, the ensemble of discrete canon- I
ical scatterers representing the forest can be replaced by an equi-

valent continuous medium characterized by an effective dyadic sus-

ceptibility . Simple mathematical expressions have been developed

relating to such biophysical parameters of the forest as tree
trunk, branch and leaf dimensions, permittivity, number density,

and orientation statistics. Expressions relating the specific
attenuation of a radiowave propagating within an unbounded forest

of tree trunks, branches or leaves to salient biophysical para-

meters of the forest have been developed and shown to agree favor-
ably with experimental data. Utilization of these expressions in

radio communication systems design still requires, however, a
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global statistical classification and quantification of these bio-

physical forest parameters.

The effective dyadic susceptibility has been used by CyberCom

in a half-space representation of the forest to extend an earlier

isotropic model proposed by Sachs and Wyatt [101] and studied by

Tamir [107]. This newer anisotropic model encompasses the lateral-

wave contributions observed experimentally on long-distance paths

above 200 Megahertz. For generality, it should be refined by con-

sideration of the ground plane.

Using linear system theory, CyberCom has extended the harmonic

anisotropic half-space model of the forest to the transmission of

arbitrarily-modulated waveforms. This extension has been used to

show the pulse distortion arising in the direct-, reflected- and

lateral-wave components of the mean scattered field, and also in

the total mean field. This extension of the model is especially

important if the model is to be used in the analysis and evaluation

of digital, spread-spectrum radio systems.

CyberCom has also investigated the random (or non-coherent)
scattered field propagating within an unbounded forest of electri-

cally-thin, infinitely-long, lossy-dielectric, parallel tree trunks.

For this simple forest model, CyberCom has shown that the intensityhof the non-coherent scattered field increases relative to that of
the coherent (mean) field with increasing distance from the source

and with increasing carrier frequency. This work should be extended

so far as possible towards fully realistic models.

In summary, the homogenous isotropic, refracting slab model of

a forest has been replaced by CyberCom with an inhomogenous, aniso-

tropic, scattering ensemble of trunks, branches, and leaves. In
consequence: ,

1. The lateral-wave contribution has been found even above

200 Megahertz.

2. Preliminary validation of the model has shown rough agree-

ment with experiments.

3. Results have been obtained for narrow pulse transmission

at 600 MHz.
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4. A preliminary study (as well as field reports) has empha-

Ssized the importance of the incoherent component of the tran:.mitted

-field.

As the CyberCom approach is ambitious in both scope and depth,

the following remain to be done:

a. The techniques already-developed must be exercised to
determine the relative importance of forest components and the

effects of varying critical parameters. For example, if the con-

tribution of branches is major, the difficult characterization of

*0 the scattering properties should be advanced in the resonant region.

b. The effects of antenna directivity, the ground, and ter-

minal movement should be incorporated into the model.

c. The difficult transport theory for the important non-

coherent scattered wave should be developed as far as practical.
d. Forest studies must be pursued to quantify important

biophysical parameters in areas of interest.

"
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APPENDIX A

Susceptibilities of Wood and Leaves

The complex susceptibilities of green wood and leaves required

for the modeling approach of CyberCom have been investigated. Meas-

urements by Broadhurst [1] of the National Bureau of Standards ap-

pear to be the best available. They are summarized in Figure A-1.

The spread of the results for the leaves represents the effects of
different percentages of moisture (30-78%) and for the branches,

* different orientations relative to the branch axis. The curves

show that the real parts of the susceptibilities X1' are nearly

constant with frequency; the imaginary parts of the susceptibilities

X" are inversely proportional to frequency at the lower frequencies
40 of interest, and rise with frequency at the higher; the results for

bamboo leaves and for tulip tree leaves and branches overlap.

CyberCom has developed and employed three simple models for

the susceptibility of green wood and leaves, suzm.arized in Table

A-I. Model I describes a frequency-independent susceptibility which

is convenient for ascertaining the effects of scatterer geometry on

the scattered wave. Model II describes a susceptibility character-

ized by a real part which is frequency-independent and an imaginary

part derived from a constant conductivity of 0.1 mho/meter. Model

III best reflects the typical behavior of measured data and includes

both a frequency-independent real part and an imaginary part related

to both conduction and relaxation losses. It is shown in Figure A-1.

The imaginary parts of the susceptibilities (the loss factors)
are shown in Figure A-2 for the three CyberCom models. The recovery

of the Model III loss factor from its minimum near 1 GHz is clearly

evident, and may be attributed to increased relaxation losses as

the resonant frequency of the water molecule (approximately 22 GHz)
is approached.
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Appendix B

* Scattering Amplitude-Transition Operator Relationship p
for Two-Dimensional Scatterers

In this Appendix the relationship between the scattering ampli-

tude and the transition operator will be obtained for two-dimensional

scatterers. This will be done for both the vector case (oblique

incidence) and the scalar case (normal incidence). The methodology

used will parallel that of Lang [571 who derived the relationship for

three-dimensional scatterers.'

Assume a dyadic plane wave is incident on a two-dimensional

scatterer as shown in Figure 2-4. The incident wave is of the form

e (x) = (I-ii)e - (tt+kz) (B-1)

where i is in the direction of incidence, i.e.

i = c+ kz )/ko (B-2)

with

k z  , kt =Ikt I (B-3)

The dyadic scattered field is gi.ven by

e = ! dx' G(x-x') * I dx" t(x',x")

(") (B..4)

where the dyadic Green's function G satisfies

L • G(x) = I6(x) (B-5)

with L given by equation (2-3-5) and t the kernel of the transition

operator.

B-1
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Since the scatterers are two-dimensional, they are invariant in

the z direction, i.e.,

t(x',x") = t(xIxz-z") (B-6)

Putting equation (B-6) into equation (B-4) and introducing the

Fourier transform of the transition operator with respect to z yields

(x) dx'dz' G(xt-x.l,z-z'). dx~ t~Ix k)

-j(k *x"+k I•(I-iile - (- t t + z '  (B-7)

where (D

t(E=, ,kz dz t(2Et ,Ei,)e+Jkz (B-B8)

Now introducing the Fourier transform of the dyadic Green's function

with respect to z gives

W_~) dx'dx" G(xt-x 'k z ) 
° t(xl ,x )

" k:

(l i )e - j (It "xE +kzz) (B-9)

where
A •.

G(t,kz ) = dz G(x*t,z)e . (B-10)

Before proceeding, the transformed Green's function must

be found. This is accomplished by transforming the well-known

expression for the three-dimensional dyadic Green's function

[Van Bladel, 811. The three-dimensional dyadic Green's function is

(x)= --- (B-li)
0

where g(x) is the scalar Green's function;

eikorg Ix) = e 0 =i
g7) r =- ,lxi (B-12)

This scalar Green's function satisfies the scalar wave equation

2 2
(V +k o)g(x) = - 6(x) (B-13)

B-2
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To find the transformed Green's function, first, the trans-

formed scalar Green's function is found. This is done by Fourier-

transforming equation (B-13) and then solving the resulting

two-dimensional equation. The result is

g(x) =- f H 2 )(ktjxtj)e-kzZ dkz  (B-14)

where
ko  k , k. I < kokt = z 0  (B-15)

2 2-j /k - k Ik > k 0

Now putting equation (B-14) in equation (B-Il), bringing the dyadic

portion of the operator through the integral and finally using

equation (B-10) yields

Gtk) = - + (kttI (B-16)

2. 0

where V =Vt jkzz

To proceed with developing the relationship between the scatter-

ing amplitude and the transition operator, an asymptotic expression 9
for s(x) will be needed. An examination of equation (B-9) shows

that this in turn requires a large Ixtl approximation for

SG(2t-E_,kz). Assuming Ixt I >> I.j and using the asymptotic

expression for the Hankel function results in

H( 1) (ktlxkxl) t /xe( ktt t -ffw/4) (B-i7)

where o xt/Ix2tI. Now substituting this result in equation

(B-16) and keeping highest-order terms yields

( (t-xk -) - e tt/4) (B-18)

t t

B-3
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where o 2t + oz ° with oz =kzko.

The final form of the asymptotic expression for the scattered

field es(x) is obtained by substituting equation (B-18) into

* equation (B-9). The result is

S (2--2  (Ioo) (ktot,ktit~k,). (-ii~e-J(ktxt* k-z( /4) (B-19)

t t

where it is the transverse portion of i (it  kt/kO ) and the

two-dimensional transformed transition operator is given by j
1 -

JQ~~k kz - Jr dxtd3S 1(EE;ze (ta-t 2 (B-20)

The desired relationship can be established by comparing the

definition of scattering amplitude with equation (B-19). The two-

dimensional dyadic scattering amplitude is defined as

e-j (ktxt+kzz)

s(x) (2t,it;kz) - " (B-21)

Comparing equations (B-19) and (B-21), one obtains

f(0t*it;kz) = Y(I-O0) .(ktotktit;kz)(I-_ii) (B-22)

where

1/2["27 3 kt (B-23),-y = [2 /kt e-j"' (/ 4 3

Before concluding this appendix a similar relationship will

be derived for the scalar problem. Because the scalar problem is

a special case of the two-dimansional vector work just presented,

those results can be used.

The scalar problem restricts attention to propagation normal

to the tree trunks and to sourcs that only excite vertical waves.

B-4 .



The vector problem reduces to the scalar problem as follows:
A0

c(B-24)

* 9(xt,kz ) "Z0  2w g(xa) 6(kz) (2

If one dots equation (2-4-4) by z0 and introduces the scalar

specializations as given by equation (B-24), one obtains the scalar

• mean-wave equation as given by equation (2-2-4) with

o A 0

t~x~t z *tx 0x;) -z -(B-25) :>

In addition, an examination of the definition of both the vector

and scalar scattering amplitudes as given in equations (2-2-10)

and (2-2-23) shows that

f(o,i) z°'f(o,i,O)Z (B-26)
* ._

The desired relationship between the scalar scattering amplitude f

and the transformed scalar transition operator t is obtained by

dotting equation (B-20) from the left and the right by z , and

then using equation (B-26) and the transform version of equation 2
(B-25). The result is

1 f (o,i) = 6 t (k0oko) L

where 6 is given by equation (B-23).

B-5
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Appendix C

* • Correlation Equation

ii. this Appendix the approximate equation for the correlation %

equation will be derived. The methodology employed in the deri-

vation will parallel the Foldy development for the mean equation.

The starting point is Equation (2-2-29) for the scalar field

quantity . Multiplying this equation through from the left by

L- 1 gives an expression for T in terms of the incident and scat-

tered fields. It is

" + N (i) (C-1) :.

Here the observation point for the field T is x, i.e., IF= (x).

An equation for the conjugate field '* -*(X) at point x can be

obtained from Equation (C-l). The result is

IN
T'# + L-1T*%V(j )  (C-2)

3. Jl

in the remainder of the appendix, the dependence of quantities on

xor x will be denoted by whether the symbols are starred (con-
*jugate) or not.

Now forming the product 'VT* and averaging yields
IN IN

<IfT*> T t +Ti _ T*I >+ L 1 <T.'Y >T#
jul i- 1

IN IN -()
+ _ L_ L<T T* TJ' J>(C)

The double sum appearing in the above equation can be broken into SOL

lik erm j wiabdntd bun whke ertemos are) Don hste folo- i

ing expression results:

C-1
.-
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- ~ N N T i)y

'40

N
L L <1 T T*,Iy(i) (i)

N N - 1 J k
+ L L <ll~TT~YiY (C-4)

V j-l k-i

To obtain an equation for the correlation function a closure

approximation is employed. The approximation to be used is

This is a geeaiaino od' closure approximation used to

derive the Iman equation. Using this approximation in Equation

C-)gives:
N *

<TT" 1 T 1fi 1< <*

N N
+ L 1 <T >(1>T + L-1L 1<T T><TV*>

Joel Junl

N N -
+ L -1l <T.><'F>L- 1CT!>C1*> (C-6)

Since the particles are identically distributed, the statistics

for each particle are the same, i.e.,

N

S<T.> N<T> (C-7)

N
< T.T#> -N<TT*> (C-8)

C-2



Employing these simplifications in Equation (C-6) results in

<TV*> T I + NYiL- <T*><f*>1L "'

+ NL <T><Y>T* + NL L-T*><>C¥T*>

+ (N'-N)L-I<T><T>L-I<T*><T*> 1C-9)

This is the desired equation for the correlation function <TV*>.

It can be simplified substantially by making use of the mean-wave

equation. ..

The mean-wave equation is givan in the text by Equation

(2-2-48). It is

<P- g (C-10)

where

Z- L - N<T> (C-11)

In order to simplify Equation (C-9), the mean equation is put in

a slightly different form. With this purpose in mind, multiply

Equation (C-10) by L "1 from the left. This gives

<>w mi + NL- <T><> (C-12)

Now using this result, Equation (C-9) becomes

2*<TV*> -<><i*> + (N -N)L-<T><,>L-<T><*> (C-13)

Multiplying from the left by £W*, using the fact that fL- and

neglecting the N2 terms in Equation (C-13) yields

- N<TT*><***> - gg* (C-14)

The above steps can be justified by scaling the problems with re-

*spect to the characterstic size of the particle, then N is replaced

by the fractional volume which is small.

The final form of the correlation equation as it appears in .-1
Equation (2-2-44) is obtained by writing the spatial average of

STT* out explicitly and by using Equation (2-2-38).

C-3
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APPENDIX D

Dyadic Notation

According to Lindell [124], dyadic formalism is the most suit-
able notation for linear vector functions when applying the gibbsian
vector notation to electromagnetic fields. Nevertheless, although
conceived by J. Willard Gibbs nearly one-hundred years ago (1884),
dyadic formalism has been introduced into electromagnetics only com-
paritively recently, and is not generally included in most engineer-
ing curricula. Thus, for the convenience of the uninformed reader,
those basic definitions and properties of dyadics employed in the
body of the report are reviewed here.

D.1 Basic Definitions

A dyadic (more properly called a dyadic polynomial) is an oper-
ator representable as

D = a 2b + a2b2 + ....... + a b (D-i)

where aaand b,.b 2,...b are vectors and which, with an ar-
bitrary vector v, forms the scalar products

v-D = (v-al)b 1 + (v-a2)b2 + ..... + (v'a )b (D-2)

_ --n -n
D*v = al(b 1 *v).+ a (b2.v) + ..... + a (b -v) (D-3)

The vectors (a } Iare called antecedents; the vectors {b I}are called
consequents. Each term of the dyadic, ab is called a dyad.

Dyadics arise naturally in electromagnetics when vector operators
are to be separate.d mathematically from the field vectors being oper-

ated uon. For exanple, the projection of the electric field e along
a linear antenna having the direction of a unit vector u can be writ-

ten as u(u-e). Here, the vector u performs the projection operation '1
upon the electric field vector e. If these two vectors are to be
separated mathematically, it is necessary to adopt the dyadic repre-
sentation uu in the expression (uu)*e.

D-1 L
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D.2 Basic Properties

Because in three-dimensional vector-space any vector v can be ro

expressed in terms of any three vectors a,b,c forming a base (i.e.,

satisfying the condition a x b ° c # C), any dyadic can be written

as a polynomial of no more than three dyads. For example, the dyadic

polynomial of Equation (D-1) can be recast in the form

D =a e + b f 4- c (D-4)

where

bxc

cxa •ajbj (D-6)

axb *(-

- [abc] ab

Since the consequents e,f,g pan also be expressed in terms of

an arbitrary three-vector base, it is clear that the dyadic D is

representable in terms of nine scalar coefficients.

For example, if the same three-vector orthonormal base is

employed for both the antecedents and the consequents, D might

be written in the form

= d,,xOx + d12 x°*° + d13 xOzO

+ d2 1YX + d 2 2 y ° + d2 3 Yz (D-8)

+ d3 1zx' + d32 zy-0 + d33 zOz0

Although these nine scalar coefficients can be written as a matrix

[dij], a dyadic is not a matrix. The matrix [dij] depends upon the

base employed and so is coordinate-dependent; the dyadic is not.

A dyadic serves as a linear mapping from one vector to another.

Conversely, any such linear mapping can be expressed in terms of a

dyadic. This can be demonstrated by applying an orthonormal base

{Uj) to an arbitrary linear function f(.a) and noting that
f (a) =:E.uR • f(Rjuj *a) (D-9)

- [Eu I  f(uluju] a (D-10)

hi D-2
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The dyadic in the square brackets corresponds to the linear function

The identity mapping has the property of mapping every vector

into itself. The corresponding dyadic.,I, is called the unit dyadic

or 3idemfactor. Thus,

*~~ a a aa*I(-)

Expressing a in an orthonormal base {ail shows that -

RI2 2R + !13 !13  (D-12)

* More generally,

=a a' + b b'+ c c' (D-13)

where {a',b',c') is a base reciprocal to the arbitrary base UK

(a,b,c}. Thus, as for any dyadicthere exists an infinity of

representatiow for the unit dyadic. As a consequence of Equation

(D-11) the matrix of coefficients [dij] associated with a given base

{aj} can be found in the relation

0 1 -. . , - Aj ji A; DijS~ (D-14)
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APPENDIX E

The Fast Fourier Transform

The fast Fourier transform (FFT) is a highly efficient algo-

rithm for computing the discrete Fourier transform (DFT). The FFT
i .4

* can be used in place of the continuous Fourier transform only to the

extent that the DFT could before, but with a substantial reduction

in computer time. This appendix reviews the basic properties of the

DFT and its relation to the continuous Fourier transform, introduces

* the FFT and identifies the major pitfalls likely to arise in its use,

and exemplifies the application of the DFT and the FFT by considering -ij
a band-limited, high-frequency, rectangular pulse.

C.1 Discrete Fourier Transform

The Fourier transform pair for continuous signals can be writ-

ten in the form

• (E-1) .
X(f) - Lx(t)*xP{-J2wft~dt -E-l'

x(t) -fX(f)exp{+j2wrftldf(-)

The integrals in Equations (E-J) and (E-Z are actually finite in

any practical case since only a finite segment of an essentially
band-limited signal will be available. This situation is commonly

represented by setting x(t) - 0 for 0 > t > T when the signal x(t)

is available only over the time interval (0,T), and Xlf) - 0 for

-B/2 > f > B/2 when the amplitude spectrum X(f) is essentially band-

limited to the frequency interval (-B/2,+B/2).

The analogous discrete Fourier transform (DFT) pair that applies

to samplod-data signals can be written in the form

N-1
X(fM) - At1;x(tkexp(-j2wfmtk) (E-3)

k-0

1/2-1(E-4)
x(tk) 4 6f mXlf. exp{+j2rfatk}

E-1



If the signal x(t) has been sampled uniformly at the Nyquist rate so

that

At- T/N - 1/2B, Af- 2B/N = l/T (E-5)

then upon letting

tk - kAt, fm - mAf -E6". ~(E-6)-'.

Equations (E-3) and (E-4) become e-1

N-I
X(m) = At E ax(k)exy{-J 2mk/Nl (E-7)

x(k.) Af E X(m)ep{+j21rrok/NI (E-8)

The periodicity of X(m) apparent in Equation (E-7) has been

used in re-ordering (for ease of computation) the summation appearing __

in Equation (E-8). More generally, however, it is apparent from
~~these equations that both X(m) and x(k) must be considered periodic,.?

i.e.

X(.mtN) = X (m) (E-9)

x (kN) - x(k)

(E-10)

This property has been anticipated in writing Equation (E-4) where

the missing end point X(f/) is considered to be the first point ofN/2
the next period in a periodic extension of X(fm ) . Mathematically

speaking, the interval from which samples of X(f) [and x(t)] are

taken must be considered closed on the left and open on the right
(or vice-versa). This property is illustrated in Figure E-1. Fur- 21
ther discussion of this topic can be found in [157].

When the sampled-data signal xlk) is real, the real part of

X(m) [denoted hereafter as X'Cim)] is symetric about the folding

frequency B [m - N/2] and the imaginary part of X(m) [denoted here-

after as X"(m) is antisymmetric. Since X(m) has been

WIL E-2
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Figure E-1: Properties of Discrete Fourier Transform
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interpreted as being periodic, these symmetries are equivalent to

*g saying that X' (m) is an even function of m and X" (m) is an odd func-

tion. This also means that the Fourier coefficients between N/2 and

N-i can be viewed as the "negative frequency" harmonics between -N/2

and -1, respectively. Likewise, the last half of the sampled-data

signal x(k) can be interpreted as negative time (that is, as occur-

ring before t 0 C). IA

Since the FFT algorithm provides an efficient transformation to

the frequency domain, it is interesting to consider the product

Y(m) F(m)X(m) (E-ll) ".

where Y(m) is the DFT of y(k), F(m) is the DFT of f(k), and X(m) is

the DFT of x(k). According to Equation (E-7)

y(k) r f 1F(m)X(m)Jexp{j2"I} (E-12)

According to Equations (E-5) and (E-7) this can be written as
At F j 2 :(M,1 e'j2wmf/N eJ2rmk/.4

y(k) = --N-o N- N-0 (E-13)

Since all of the sums are finite this can be written 2
AN-1 N-1 IN-1 J

y~ At -1NiNiJ2TTk-T-1) (I/N):-4)1
TWuO two M-0

This can be simplified through the use of the orthogonality relation

Nd2wlm/N eJ27 n/N'=  N, if n=m (modulo N)

-0 0, otherwise (E-15)

Thus, Equation (E-14) is zero unless t = k-T and hence

N-1
y(k) = At Ex(.-0f k-(E-I.)

T-0

Equation (E-16) may be recognized as the discrete form of the convo-

lution integral

y(t) fx(T)f(t-T)dT (E-17)
0
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Equation (E-17) can be associated with the response y(t) if a fixed

linear system to the input x(t), if that linear system can be char-

acterized by the impulse response f(t,T) where .

f(t,T) - f ( f - T) , if t> :i.
ot r) f tCT (E-18)

C.2 Fast Fourier Transform

The fast Fourier transform (FFT) is a highly efficient algorithm

fox computing the discrete Fourier transform (DFT). Taking advantage

of the fact that the complex exponential weights appearing in the DFT

can be calculated iteratively, the algorithm employs a clever compu-

* tational technique for sequentially combining progressively larger

partial sums of the exponentially weighted data samples to realize

the DFT. Iwo mathematically equivalent versions of the FFT algorithm

usually provide the basis for implementation: the Cooley-Tukey
(decimation-in-time) algorithm and the Sande-Tukey (decimation-in-

frequency) algorithm. The algorithm chosen for implementation is

usually selected to exploit the characteristics of the sampled data

and/or the hardware-software properties of the computer being used.

The value of the fast Fourier transformation lies in the reduc-

tion of computer execution time in evaluating the discrete Fourier

transform. Whereas a direct N-point evaluation of the DFT typically

requires a computer execution time proportional to N2, the FFT re-

quires a computer execution time proportional to only N-Log N. The
2

approximate ratio of FFT to direct execution time is given by

N'logN = log2N (E-19)
N2  N :1

* For example, if N = 256 = 28, the FFT requires only about 3% of the

time required by direct computation.

Four problems often encountered in using the FFT are: aliasing,

leakage, picket-fence effect, and round-off error. The term "ali-

*. asing" refers to the fact that high-frequency spectral components of

a band-limited signal can "impersonate" low-frequency spectral com-

ponents if the sampling rate is too low [1531. This circumstance is

reflected in its amplitude spectrum where the sidebands of frequency

E-5



*: translated baseband replicas are observed to overlap. This problem

" can be eliminated by sampling the signal at a rate at least twice as

high as the highest frequency present in its amplitude spectrum.

"- "Leakage" refers to distortion in the amplitude spectrum of a band-

limited signal arising as a result of utilizing only a finite number

of data samples from the signal's data record. This problem can be

mitigated (but not eliminated) either by increasing the record length

*. of the signal or by applying a data window to the data record [157].

The "picket-fence effect" refers to enhanced spectral responses at

the discrete frequencies of the DFT due to interstitial, unresolved,

spectral components of the signal. This problem can be mitigated

(but not eliminated) by using an interpolation function between the

discrete frequencies of the DFT or by extending the data record arti-

ficially with zero samples in order to increase the spectral resolu-

tion of the DFT. "Round-off error" arises in numerical computation

as a result of the finite word length employed in digital computers

for the representation of numbers. According to Kaneko and Lin

[159,160] the total relative mean-square error (MSE) due to round-off

error is bounded by

n 2b <MSE<3n (E-20)
n 3

where, N-I

< Ele(m)12>
X x(m) 12 (E-21)

M-0

e(m) = (m-X(m) (E-22)

n log2N (E-23)

and I(m) is the computer value of X(m) based upon a b-bit representa-

tion for the mantissa (not including sign) of a real variable using "i

binary floating-point arithmetic with double precision accumulation.
For example, using double-precision real variables of 4 bytes each

(3-byte mantissa, 1-byte exponent) so that b - 23 and a 512-point

transform so that n - 8, the total relative MSE is bounded by

E-6
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3.79xlO <MSE<l1.4x10. (E-24)

The total relative root-mean-square error (RMSE) in the amplitude

spectrum is thus bounded by

i.95xi0 7 <RMSE<3.37xi0 7  (E-25)

The relative accuracy in the calculation of the amplitude spectrum

is thus, roughly speaking, about 1 part in 107. j
In passing it may be noted that the FFT not only reduces the

computation time of the DFT, it also substantially reduces the

round-off errors associated with direct computation. In fact, both '.

computation time and round-off error are reduced by the same factor"'of (log INl/N [1561. Further, although the above discussion of the
problems encountered in using the FFT was couched in terms relating

to the forward transformation of variables from time to frequency

[Equation (E-7) ], the discussion remains valid in the inverse trans-

formation of variables from frequency to time [Equation CE-8)].

C.3 Example: Bandpass Rectangular Pulse

The basic properties of the discrete Fourier transform (DFT) and
its computation by the fast Fourier transform (FFT) may be exempli-

fied by considering the bandpass rectangular pulse

x~t M p (t) cosC2if t) (E-26)

where f is the r-f carrier frequency and p(t) is the pulse envelope
0

defined by

Itl< L/2
o,' jtj> L/2 (E-27) .

where L is the pulse length (duration). In the numerical computa-

tions which follow, f will be taken to be 600 MHz and L to be
0

5 nanoseconds (3 r-f cycles).
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The amplitude spectr,3m of the pulse envelope can be determined

from Equation (E-i) to be

P(f) - L sinc{7rfL) (E-28'

It should be noted that although the pulse p(t) is undefined for

Itl = L/2, the inverse transformation of P(f) using Equation (E-2)

converges to

P(IL/21) - O.5 CE-29)

because of Gibb's phenomenon [ I. As a consequence, the numerical

representation of p(t) at the point of discontinuity (It - L/2)

must be that afforded by Equation (E-29). Failure to accomodate

-ibb's phenomenon at points of discontinuity in the signal (or even

the spectrum) will lead to spurious oscillations in the transformed

variable.

* The r-f carrier cos(2wf t) and its amplitude spectrum [two 6

functions at +f0] and the pulse envelope p(t) and its amplitude

spectrum Pjf) are shown, respectively, in Figures E-2 (a) and (b).

The bandpass rectangular pulse x(t) [refer to Equation (E-26) I and
its amplitude spectrum.

(E-30) ..
X(f) - IL inc{7TL(f+f.)1 - sinc {rL(f-fef}] (E30

are shown, respectively, in Figure E-2 (c). In consonance with

Equations (E-Il) and (E-16) and the time-frequency duality of the

Fourier transform [refer to Equations (E-l) and (E-2) ], Equation

(E-30) and Figure E-2 (c) reflect the fact that the amplitude spec-

trum of the product of two time functions is equal to the convolution

of their respective amplitude spectra.

The sampled-data signal x(k) is obtained by multiplying the
bandpass rectangular pulse x(t) by an infinite train of unit impulses
(or Dirac comb) defined mathematically by

c~t) - $(t-k~t) (E-31)

E-9
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The Dirac comb and its amplitude spectrum

C(f M 1 (E-32)

are shown in Figure E-2 (d). The sampled-data signal x(t) and its

amplitude spectrum C(f)*X(f) are shown, respectivelyr in Figure E-2
Ce'. It is apparent from this figure that, because the amplitude

spectrum of the pulse [P(f)] is not strictly bandlimited, aliasing

cannot be entirely avoided and some spectral overlapping is ines-
capable. However, CyberCom has found that the alasing associated

with non-bandlimited signals (which, strictly speaking, arise only
in mathematical models and not in real systems) can be held within

acceptable bounds, in most cases, by letting

At [2(f.+B9 )- (E-33)At9

where B is the low-pass equivalent bandwidth containing 99% of the
signal power. Note that this rule is consistent with the low-pass OP

Nyquist sampling rate when the signal in strictly bandlimited to B

Hertz. For P(f) [refer to Equation (E-28)], the 99% containment

bandwidth is [153]

B 10.5 (E-34)

In the numerical computation which follow

3
TO~ (E-35)

so that

At W1 (E-36) i.1

which corresponds to a sampling rate of 8 samples per r-f cycle. It

should be noted that the aliasing appearing in Figure E-2 (e) will

not lead to distortion in recovering the sampled-data signal x(k)

from C(f)*X(f) via the inverse Fourier tranformation. This is as-

sured by the isomorphic (one-to-one) relation between a Fourier

r10



tzansform and its inverse. However, subsequent signal processing

operations which modify the amplitude spectrum C(f)*X(f) [e.g.,

convolution] will be affected.

The continuous frequency-domain function C(f)*X(f) shown in

Figure E-2 (e) can also be made discrete (sampled) by treating the

rample-data signal x(k) as one period of a periodic function with the

data e-imple x(N/2) taken as the first sample of successive periods.

This forces hot.'d the time-domain and frequency domain functions

x(k) and X(m), ectively] to be infinite in extent, periodic,

and discrete as shown in Figure E-2 (f). The resolution in the fre-

quency-domain is determined by the relation

11
f - NAt (E-37)

where T is the period in the time domain, At is the sampling rate,

and N is the number of data samples. It io apparent from Equation

(E-37) that the resolution can be increased by increasing the sam-

pling rate and/or the :.umbei oi data points. The number of data

points can always be in•creased without changing the sampling rate

by filling out the (truncated) data record x(k) with zeroes. In

the numerical calculations which follow N was taken to be a power of

2, spe,. fically

N = 2 = 256 (E-3.(E-38)--

As a consequence of Equations (E-36) and (E-37) .1
(E-39)

f 75 fo--= M ~z

32 4

E-l1 -2"

~ ~ ~ a-J- -* -~ -- - - - - o



APPENDIX F

Optical Theorem for Scalar Fields in Two-Dimensional Media

The purpose of this appendix is to apply Poynting's vector

theorem to two-dimensional scatterers that are normally illuminated.

This will lead naturally to definitions of the total, scattering

and absorption cross-sections for the scalax case.

Consider a two-dimensional scatterer of cross-section S as
p

shown in Figure F-1. Assume that the scatterer is oriented in such

0 a way that its generating elements are parallel to the z axis.
The scatterer is illuminated by a unit amplitude plane wave.

E = i ()z = e-k°xt (F-l) ...

where i•z* = 0.

Apply Poynting's vector theorem to a circular cylindrical

volume of unit height and surface So . The cylinder has radius r
which is assumed to be large. If E and H are the total electric
and magnetic fields then

R fs. s*da + !v aE-E*dV - 0 (F-2)

where Sc is the complex Poynting vector,
Sc = %ExH* (F-3)

a is the conductivity of the scatterer's material and Vo is the

volume of the unit height cylinder. Because the scatterer and

the incident field are both independent of z, it follows that

E 2(t) z (F-4)

*i The scalar field i(xt) is composed of an incident and scattered

portion, thus

V V'i(x ) + *J.(Xt) (F-5)

The scattering amplitude, f(o,i), is introduced when the scattered TI
wave is represented in the far field as follows:

0 F-1
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Figure F-i Two-Dimensional Scattering GeometryI
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s t ) - f(oi)e- jkt°- ' Et r = >> (F-6)

where o = t/r.

Finding the incident and scattered magnetic fields from
Maxwell's equations for large r and then using them in equation
(P-2) results in the following equation:

f(oi) f2 [f(o,i)eJkor(cose'l)
f d8(2.4) I[de+,f R
0 0

-jkor(cosO-l) (F-7) -1+f*lo, ile 0cose] de - a

where the angle e is defined in Figure P-1 and the absorption

cross-section aa is given by [55] j
aa ifV aE*EdV (F-8)

The derivation is completed by asymptotically evaluating the
the integral in equation (F-7) for large kor. The integral can be
divided into two integrals each of which can be treated by the
method of stationary phase. A calculation shows that there are
stationary points of 6=0,r and 2w. Now using this asymptotic
result in equation (F-7), one obtains

f 27f If(o,) 2 de + 2 Rf(ii)eIW/4 + a = 0 (F-9)

sec.;ause the scattering cross-section a. is defined as
2 I

* o If(oi)I2 de (F-10)

and the total cross-section is the sum of the scattering and
absorption cross-section i.e., '

at 06 + Ga (-l ).

one obtains
2r2 i /4] (F-12)

- f(i,i)eJ(-2

The expressions for a and atin terms of the scatte-ingamlTue caresns o s

amplitude f can be put in terms of the Fourier transform of the
transition operator t. By using equation (2-2-24) in equations

(F-10) and (7-12), the following expressions are obtained:

F-3
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APPENDIX G

Alternative Representation for the Intensity of Scalar Fields

in Two-Dimensional Media

In Chapter 7 an integral representation for the normalized

intensity [equation (7-28)] has been obtained. Unfortunately, the

integral is very slowly convergent for large values of tq. To -.. _-j

rectify the difficulty, the integral will be converted into an

alternate form which is more rapidly convergent.

For convenience, the original expression for Y(T) is repeated

here. It is given by

I(T)=TeT fo dggJ0 (Tg) (G-1) -

0q =I+l -W 0

The alternative representation for Y(T) can be obtained by deforming

the integration path in the q plane. To do this an integral from

- to +- is needed. This is obtained by representing Jo(Tq) in

terms of the Hankel function,

Jo (q) = [H ' tq) + I ..q)./2 (G-2)

0 0 0

*and then substituting this expression into equation (G-l).

This gives
T qH 11  (Tq)TeT  0 --T (T) f odq ---

. -w (G-3) m

+ 2 qH .(Tq)

The last integral in equation (G-3) is now transformed by letting

q1 qe, > 0. The result when combined with the first

integral of equation (G-3) is given by

T dq qH(1) ('rq)

((T) M f (G-4)

W" 0 AL.,
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Figure G-1 Integration Paths for Normalized Intensity ~D
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where P is the resulting integration path shown in Figure G-l.

The small parameter e has been introduced in order to avoid the -

branch-cut of the Hankel function lying along the negative real

q axis.

An examination of the singularities of equation (G-4) shows

that in addtion to the Hankel function branch-cut, there are

simple poles at q - q± = + i A WT and branch point singularities

at q - ii. The branch cuts associated with these branch point

singularities are chosen alo. q the positive and negative imaginary

, axes. The alternative form of the integral is now obtained by

deforming the integration path P into the upper half of the q plane.

Because the integrand tends to zero as q in the upper half

q plane, the inte ral is represented wholly by the contribution due

to the pole q = q± and the upper branch-cut. The result is

I'(T) =2wiTWoe Ho  ..,..:.jr /

•~~ H (c~2d o1) (-rq) (G-5)tTet '' dq q 0___H ___- w,

where the paths C1 and C2 are defined in Figure G-1.

o The integrals over C1 and C2 can each be transformed to the

real positive axis and combined. The result is

I'(T) -2W oeTK (TrA"W2)

CD K (T.'l+pt)
+-2 ej odp pi 0 - (G-6)W 0 2 + w2="1

0

Here Ko(z) is the modified Hankel function. Because Ko(z) is

decaying exponentially for large z, the integral converges rapidly

for large values of p.

G-3
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